Supporting Information for

Lithium and magnesium complexes from the employment of pyridyl-pendanted unsymmetrical β-diketiminates: syntheses and utilization as catalysts for the hydroboration of carbonyl compounds

Yafei Li,^{†a} Huifen Pan,^{†a} Yanhua Lu,^a Yanshu Luo,^b Yan Dang,^a Yalan Wang,^a Shengwang Xia^a and Yahong Li^{*a} and Yuanzhi Xia^{*b}

College of Chemistry, Chemical Engineering and Materials Science, Soochow	
University, Suzhou 215123, People's Republic of China.	
⁹ College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou	
325035, People's Republic of China.	
E-mail: <u>liyahong@suda.edu.cn;</u> xyz@wzu.edu.cn	
These two authors contribute equally to this paper.	
1. Synthesis of complexes 1-3	2
2.NMR spectra of complexes 1-3	3
3.NMR spectra of the products of the hydroboration of aldehydes with HBpin	6
1.NMR spectra of the products of the hydroboration of ketones with HBpin1	3
5. Chemoselective hydroboration of aldehydes catalyzed by 1 1	9
5. Stoichiometric reactions of complex 1 with benzaldehyde and HBpin2	3
7. Gram-scale synthesis of 8f catalyzed by complex 2	6
3. Crystallographic data and structure refinements for complexes 1-32	8
O. Selected bond lengths [Å] and angles [°] for complexes 1-3	9
0. Molecular structure of complex 230	0
11. Computational details and results	1

1. Synthesis of complexes 1-3

Scheme S1. Synthesis of complexes 1-3

2. NMR spectra of complexes 1-3

Complex 1: ¹H NMR (600 MHz, Chloroform-d) δ 7.23 – 7.20 (m, 2H), 7.06 (d, 2H), 7.00 (dd, 1H), 6.50 (d, 1H), 6.26 (m, 1H), 4.83 (s, 1H), 2.99 (m, 2H), 1.80 (s, 3H), 1.68 (s, 3H), 1.15 (d, 6H), 1.03 (d, 6H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.75, 166.59, 161.01, 147.62, 146.30, 145.64, 139.75, 136.68, 123.00, 122.89, 122.72, 117.66, 113.73, 100.46, 28.26, 27.90, 23.83, 23.58, 23.41, 23.31, 22.57, 22.54.

Fig. S2 ¹³C NMR spectrum of complex 1.

Complex 2: ¹H NMR (600 MHz, Chloroform-d) δ 7.16 (t, 1H), 7.09 – 6.96 (m, 3H), 6.36 (d, 1H), 6.17 (d, 1H), 4.78 (s, 1H), 3.02 (m, 2H), 1.77 (s, 6H), 1.68 (s, 3H), 1.20 – 1.12 (m, 6H), 1.10 (s, 3H), 0.92 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 167.25, 165.79, 160.91, 155.10, 147.81, 140.33, 139.51, 136.84, 123.00, 122.84, 114.14, 112.83, 100.74, 27.96, 27.58, 24.52, 24.06, 23.90, 23.75, 23.49, 23.16, 23.07, 22.57.

Fig. S3 ¹H NMR spectrum of complex 2.

Fig. S4 ¹³C NMR spectrum of complex 2.

Complex 3: ¹H NMR: (400 MHz, Benze-d₆) δ 7.22 (d, 1H), 7.06 (t, 1H), 6.95 (d, 1H), 6.88 (t, 1H), 6.27 (d, 1H), 6.06 (d, 1H), 4.76 (s, 1H), 3.52 (m, 1H), 3.11 (m, 1H), 1.80 (s, 3H), 1.76 (s, 3H), 1.64 (s, 3H), 1.56 (d, 3H), 1.30 (d, 3H), 1.04 (d, 3H), 0.61 (d, 3H). ¹³C NMR (151MHz, Benze-d₆) δ 170.55, 161.76, 158.07, 156.42, 148.51, 142.20, 141.61, 137.77, 124.55, 123.77, 123.20, 28.97, 27.94, 27.26, 26.54, 25.53, 25.49, 24.28, 23.61, 22.10.

Fig. S6 ¹³C NMR spectrum of complex 3.

3. NMR spectra of the products of the hydroboration of aldehydes with HBpin (a)

Fig. S7¹H NMR spectra of 5a catalyzed by compounds 1 (a) and 2 (b).

Fig. S8 ¹³C NMR spectrum of 5a.

(a)

(c)

(d)

(b)

Fig. S9 ¹H NMR spectra of 5b catalyzed by compound 1 after 30 min (a) and 60 min with 2 equiv of HBpin (c), and catalyzed by 2 after 30 min (b) and 60 min with 2 equiv of HBpin (d).

Fig. S10 ¹³C NMR spectrum of 5b.

5b: ¹H NMR (300 MHz, Chloroform-*d*) δ 7.24 (d, 2H), 7.05(d, 2H), 4.88 (s, 2H), 1.26 (s, 12H). ¹³C NMR (151 MHz, Chloroform-d) & 147.19, 146.60, 126.86, 123.56, 83.40, 65.53, 24.57.

Fig. S12 ¹³C NMR spectrum of product 5c.

5c: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, 2H), 7.50 (d, 2H), 5.02 (s, 2H), 1.27 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 147.21, 146.60, 126.85, 123.57, 83.39, 65.54, 24.59.

Fig. S13 ¹H NMR spectrum of 5d.

Fig. S14 ¹³C NMR spectrum of 5d.

5d: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, 2H), 7.47 (d, 2H), 5.00 (s, 2H), 1.24 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 156.15, 140.71, 129.51, 118.48, 114.61, 113.69, 83.32, 66.54, 24.54.

Fig. S15 ¹H NMR spectrum of 5e.

5e: ¹H NMR (400 MHz, Chloroform-d) δ 7.02 (s, 1H), 6.74 (s, 2H), 4.96 (s, 2H), 3.75 (s, 6H), 1.27 (s, 12H).

Fig. S17 ¹³C NMR spectrum of 5f.

5f: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 6.76 (t, 1H), 6.17 – 6.13 (m, 2H), 4.86 (s, 2H), 1.29 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 129.40, 118.29, 108.11, 107.70, 83.20, 59.85, 24.68.

Fig. S19 ¹³C NMR spectrum of 5g.

5g: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.37 – 7.31 (m, 4H), 7.27 – 7.24 (m, 1H), 4.94 (s, 2H), 1.27 (s, 12H).¹³C NMR (151 MHz, Chloroform-*d*) δ 139.21, 128.26, 127.35, 126.71, 82.94, 66.67, 24.60.

5h: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, 1H), 7.85 (t, 1H), 7.43 – 7.33 (m, 2H), 5.00 (s, 2H), 1.23 (s,

12H).

4. NMR Spectra of the products of the hydroboration of ketones with HBpin

Fig. S22 ¹³C NMR spectrum of 7a.

7a: ¹H NMR (400 MHz, Chloroform-*d*) δ 4.33 – 4.27 (m, 1H), 1.22 (d, 12H), 1.17 (d, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 82.40, 67.28, 24.53, 24.29.

Fig. S23 ¹H NMR spectrum of 7b.

7**b:**¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, 2H), 7.24 (d, 2H), 5.19 (q, 1H), 1.46 (d, 3H), 1.22 (d, 12H).

Fig. S24 ¹H NMR spectrum of 7c.

7c: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, 4H), 7.36 (t, 4H), 7.29 (d, 2H), 6.26 (s, 1H), 1.26 (s, 12H).

Fig. S25 ¹H NMR spectrum of 7d.

Fig. S26 ¹H NMR spectrum of 7e.

7e: ¹H NMR (600 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 9H), 6.13 (s, 1H), 1.21 (s, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 142.13, 141.14, 133.33, 131.30, 128.63, 128.51, 127.85, 83.25, 76.63, 24.50.

Fig. S28. ¹H NMR spectrum of 7f.

7f: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (d, 2H), 7.11 (d, 2H), 5.21 (q, 1H), 2.31 (s, 3H), 1.47 (d, 3H), 1.21 (d, 12H).

Fig. S29 ¹H NMR spectrum of 7g.

7g: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, 2H), 7.34 (d, 5H), 7.16 (d, *J* = 7.8 Hz, 2H), 6.23 (s, 1H), 2.36 (s, 3H), 1.26 (s, 12H).

Fig. S30 ¹H NMR spectrum of 7h.

7h: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (d, 1H), 7.91 (t, 1H), 7.47 – 7.36 (m, 2H), 5.13 (m, 1H), 1.46 (d, 3H), 1.21 (d, 12H).

7i: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (s, 4H), 5.20 (q, 1H), 1.46 (d, 3H), 1.22 (d, 12H).

Fig. S32 ¹H NMR spectrum of the product of the reaction of benzaldehyde and acetophenone with HBpin in a 1:1:1 molar ratio.

Fig. S33 ¹H NMR spectrum of the products of the reaction of 4-cholorobenzaldehyde and 1-(4-chlorophenyl)ethan-1-one with HBpin in a 1:1:1 molar ratio.

Fig. S34 ¹H NMR spectrum of the products of the reaction of 4-methylbenzaldehyde and 1-(p-tolyl)ethan-1-one with HBpin in a 1:1:1 molar ratio.

6. Stoichiometric reactions of complex 1 with benzaldehyde and HBpin

(b)

Fig. S36 ¹H NMR spectra for the stoichiometric reaction of complex **1** with HBpin. (a) ¹H NMR spectrum of complex **1**. (b) ¹H NMR spectrum of the mixture of complex **1** and HBPin. (c) Superposition of (b) and (a).

7. Gram-scale synthesis of 8f catalyzed by complex 2

Magnetic stir bar, 1-(*p*-tolyl)ethanone (**6f**) (2.0 g, 14.9 mmol, 1.0 equiv), and catalyst (**2**) (19.5 mg, 0.03 mmol, 0.2 mol%) were placed in a round-bottom flask and following flushing with argon gas. After cooling with ice bath, HBpin (1.91 g, 14.9 mmol, 1.0 equiv) was added dropwise through a syringe. After stirring for 30 min at room temperature, additional HBpin (573 mg, 4.47 mmol, 0.3 equiv) was added, and the reaction was stirred for 1 h and monitored with TLC. After 1-(*p*-tolyl)ethanone (**6f**) was consumed completely, NaOH (20 mL, 2M in water) and THF (20 mL) were added. The reaction was stirred for 1.5 h at room temperature. The solvent of THF was evaporated and the water phase was extracted with CH₂Cl₂ (30 mL x 3). The combined organic layers were washed with brine dried with anhydrous Na₂SO₄ and concentrated under vacuum. The crude product was purified by silicon gel column with ethyl acetate in petroleum ether (5% to 10%) to afford 1-(*p*-tolyl)ethanol (**8f**) (1.87 g, 13.7 mmol, 92% yield) as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 2H), 4.87 (q, *J* = 6.5 Hz, 1H), 2.34 (s, 3H), 1.78 (s, 1H), 1.48 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.9, 137.2, 129.2, 125.4, 70.3, 25.1, 21.1.

8. Crystallographic data and structure refinements for complexes 1-3

	1	2	3
Empirical formula	$C_{44}H_{56}Li_2N_6$	$C_{184}H_{240}Li_8N_{24}$	$C_{49}H_{67}MgN_6$
Formula weight	682.82	2843.51	764.39
Temperature [K]	189.0	120.02	296.15
Crystal system	monoclinic	triclinic	monoclinic
Space group	$P2_l/c$	P-1	C2/c
a/Å	11.2500(8)	19.401(3)	17.8797(11)
b/Å	17.6853(11)	19.525(3)	21.1458(13)
<i>c</i> /Å	21.0440(15)	25.019(3)	24.3580(15)
α/°	90	105.371(3)	90
<u>8</u> /°	93.665(2)	105.614(3)	96.658(2)
,/°	90	97.599(4)	90
Volume/Å ³	4178 3(5)	8587 0(19)	9147 2(10)
7	4	2	8
$=$ α/cm^3	1 085	1 100	1 110
	0.062	0.064	0.078
	0.003	0.004	0.078
4(000)	1472.0	3072.0	3320.0
Crystal size/mm ³	$0.18 \times 0.04 \times 0.02$	$0.25 \times 0.2 \times 0.1$	$0.16 \times 0.03 \times 0.02$
Radiation	$Mo-K_{\alpha}$	Μο-Κα	Μο-Κα
O man and fam data	$(\lambda = 0./10/3)$	$(\lambda = 0./10/3)$	$(\lambda = 0./10/3)$
co range for data	5.804 to 50	5.252 to 50	5.118 to 55.162
	-13 < h < 13	-23 < h < 23	-23 < h < 23
ndex ranges	-21 < k < 21.	$-23 \le k \le 23$.	$-25 \le k \le 27$.
	$-25 \le l \le 25$	$-29 \le 1 \le 29$	$-31 \le 1 \le 29$
Reflections collected	50327	158605	86204
	7330	30173	10512
ndependent reflections	$[R_{\rm int} = 0.1065]$	$[R_{\text{int}} = 0.1245],$	$[R_{\rm int} = 0.0885]$
Data/restraints/parameters	7330/0/481	30173/3520/2001	10512/47/520
Goodness-of-fit on F^2	1.098	1.036	0.993
Final R indexes	$R_1 = 0.0588,$	$R_1 = 0.1733,$	$R_1 = 0.0690,$
<i>I</i> >=2σ (<i>I</i>)]	$wR_2 = 0.1481$	$wR_2 = 0.4196$	$wR_2 = 0.1791$
Final R indexes	$R_1 = 0.1130,$	$R_1 = 0.2238,$	$R_1 = 0.1233,$
all data]	$wR_2 = 0.1686$	$wR_2 = 0.4358$	$wR_2 = 0.2119$
Largest diff. peak/hole/e Å ⁻³	0.29/-0.22	0.57/-0.47	1.17/-0.95

Table S1 Crystallographic data and structure refinements for complexes 1-3

9. Selected bond lengths [Å] and angles [°] for complexes 1-3

Complex1			
N1–Li1	1.934(4)	N3–Li2	1.971(4)
N2–Li1	1.960(4)	N6–Li1	1.975(4)
N5–Li1	2.381(4)	N5–Li2	1.986(4)
N4–Li2	1.921(4)		
N1–Li1–N5	134.8(2)	Li2–N5–Li1	74.42(16)
N4-Li2-N5	99.23(18)	N4-Li2-N3	141.6(2)
N3-Li2-N5	111.3(2)	N6-Li1-N5	62.90(12)
N6-Li1-N2	107.49(18)	N1-Li1-N6	138.3(2)
N1-Li1-N2	99.80(17)	N2-Li1-N5	109.63(18)
Complex 2			
N1–Li1	1.964(16)	N3–Li2	2.023(15)
N2–Li1	1.979(15)	N6–Li1	2.053(15)
N5–Li1	2.384(15)	N5–Li2	1.957(15)
N4–Li2	1.982(15)		
N1-Li1-N5	133.5(7)	Li2–N5–Li1	76.3(6)
N4-Li2-N5	97.6(6)	N4-Li2-N3	146.4(8)
N3-Li2-N5	112.0(7)	N6-Li1-N5	61.8(4)
N6-Li1-N2	107.3(7)	N1–Li1–N6	140.5(8)
N1-Li1-N2	99.3(6)	N2-Li1-N5	110.8(7)
Complex 3			
Mg1–N1	2.232(2)	Mg1–N4	2.314(2)
Mg1–N2	2.056(2)	Mg1–N5	2.054(2)
Mg1–N3	2.324(2)	Mg1–N6	2.234(2)
N1-Mg1-N2	87.25(6)	N4–Mg1–N2	107.79(8)
N1-Mg1-N3	142.57(8)	N4–Mg1–N6	141.95(8)
N1-Mg1-N4	96.68(8)	N1-Mg1-N5	102.65(8)
N1-Mg1-N6	108.34(8)	N2-Mg1-N5	165.28(9)
N2-Mg1-N6	101.73(8)	N3-Mg1-N5	106.28(8)
N2-Mg1-N3	60.47(7)	N4–Mg1–N5	60.71(8)
N4-Mg1-N3	77.76(7)	N6-Mg1-N5	85.61(8)
N6-Mg1-N3	97.17(7)		

Table S2 Selected bond lengths [Å] and angles [°] for complexes 1-3

10. Molecular structure of complex 2

(a)

Fig. S39 (a) ORTEP drawing of **2** with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. (b) Coordination polyhedron of lithium ions.

11. Computational details and results

All DFT calculations were carried out with the Gaussian 09 suite of computational programs.[1] The geometries of all stationary points were optimized using the B3LYP hybrid functional at the basis set level of 6-31G(d). Frequencies were analytically computed at the same level of theory to obtain the free energies and to confirm whether the structures are minima (no imaginary frequency) or transition states (only one imaginary frequency). The solvent effect of toluene was evaluated by using the SMD polarizable continuum model by carrying out single point calculations at the M06/6-311+G(d,p) level. All transition state structures were confirmed to connect the proposed reactants and products by intrinsic reaction coordinate (IRC) calculations. All the energies given in the text are relative free energies corrected with solvation effects.

Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Species	$G_{298}{}^a$	Eb	E_{Sol}^{c}
1	-2053.369038	-2054.194054	-2053.177088
1'	-1026.679443	-1027.078415	-1026.566717
4g	-345.493771	-345.5734477	-345.4220617
IN1	-1372.174265	-1372.672319	-1372.010389
HBpin	-411.712156	-411.8705623	-411.7159823
IN2	-1783.872176	-1784.552778	-1783.746669
TS1	-1783.8501	-1784.53417	-1783.727181
IN3	-1783.91899	-1784.609227	-1783.803014
5g	-757.241925	-757.5055264	-757.201211

Table S3. Cal	culated I	Energies (in Hartree)	1
---------------	-----------	------------	-------------	---

^a Sum of electronic and thermal free energies

^b Electronic energies

1

^c Single point energies in solution

Cartesian Coordinates for All Species

с

С	2.38663500	0.22217400	0.67461800	С	8.62683800	1.72026700	4.03889700
С	3.04090900	0.70399400	-0.48903500	н	6.92131800	2.85973500	3.38883800
С	2.61463600	0.27863900	-1.77235900	С	9.64813900	0.43175000	2.31521300
С	1.52793700	-0.59956100	-1.86461700	С	9.62217700	0.81615600	3.64869800
С	0.87623600	-1.07282400	-0.72969200	н	8.55012200	2.04292600	5.07451500
н	0.80647400	-1.03707300	1.41408500	н	10.40620600	-0.26046800	1.95583400
н	1.18667000	-0.91988500	-2.84602000	н	10.34864000	0.42263700	4.35127400
н	0.03547900	-1.75525500	-0.82384300	Ν	8.78458800	0.87998500	1.38738600
с	3.29710000	0.76501100	-3.04885600	Li	5.99804700	0.73063000	-0.27704400
С	2.38290000	1.70190400	-3.86432700	C	13.89243800	-0.26135200	0.52513200
С	3.78194600	-0.40389800	-3.92685800	C	12.78963100	-0.31224100	-0.33600900
н	4.17816600	1.34224800	-2.75067200	C	12.07020300	0.88308400	-0.59726100
н	2.07346400	2.57428200	-3.27904300	C	12.45887200	2.09679800	0.02330500
н	2.90260200	2.06382000	-4.75995500	C	13.57761300	2.09536000	0.86502900
н	1.47428300	1.18216200	-4.19221300	C	14.29484600	0.93045900	1.12056400
н	4.44659000	-1.07223800	-3.36985400	н	14.44901700	-1.17314200	0.72880800
н	2.94422000	-1.00354200	-4.30235100	н	13.89204400	3.02621400	1.33034100
н	4.32712300	-0.02316000	-4.79923800	н	15.15932300	0.95113500	1.77913000
с	2.83184600	0.63017900	2.07825300	С	11.70360700	3.40099100	-0.22037000
с	3.41023900	-0.56578000	2.86013700	С	12.52352300	4.38094100	-1.08410000
С	1.69602000	1.29982500	2.87581200	С	11.27470700	4.07841400	1.09469700
н	3.63697500	1.36262500	1.97436000	н	10.79350300	3.15440500	-0.77686000
н	4.26665900	-1.00652000	2.33681000	н	12.78782000	3.94216800	-2.05199500
н	3.75200700	-0.24941000	3.85327400	н	11.95306900	5.29839200	-1.27446500
н	2.66232600	-1.35564600	3.00016000	н	13.45615600	4.66493300	-0.58129600
н	1.28397300	2.16068400	2.33777600	н	10.68008700	3.40165300	1.71707600
н	0.87075100	0.60394100	3.06791400	н	12.13895300	4.40267900	1.68661900
н	2.06442400	1.65035600	3.84761300	н	10.67271800	4.97060500	0.88337500
с	4.08607400	2.83465100	-0.22287200	С	12.38947100	-1.64991900	-0.95737700
с	5.18419000	3.69047500	0.10925400	С	11.90870900	-2.65108800	0.11118100
с	6.41106600	3.37241600	0.68753500	С	13.52808300	-2.26080800	-1.79783100
н	4.96589600	4.75210900	0.04444500	н	11.54633900	-1.46816500	-1.62934800
N	4.19460600	1.52989800	-0.35088700	н	11.05089700	-2.25697300	0.66847400
с	2.74713700	3.54594500	-0.36128100	н	11.60026400	-3.59521800	-0.35432000
н	2.88104000	4.52637100	-0.82884700	н	12.70093500	-2.87836500	0.83455200
н	2.02933800	2.96679200	-0.94482100	н	13.86758700	-1.56698800	-2.57479500
н	2.30761200	3.71883100	0.62953700	н	14.39736200	-2.51432300	-1.17921400
с	7.22421200	4.56503000	1.18730200	н	13.19162100	-3.18245000	-2.28811800
н	7.08232100	5.41390700	0.51144800	С	10.96313700	0.91121100	-2.71274500
н	6.90643700	4.89441600	2.18354200	С	9.84965500	0.67326900	-3.58017800
н	8.29145300	4.33709000	1.23642500	С	8.65369800	0.00603500	-3.32489300
N	6.90727200	2.11691500	0.77734600	н	10.03235300	0.91035000	-4.62397000
с	7.81743900	1.76515400	1.75012800	Ν	10.89422000	0.83138500	-1.40156100
с	7.72455200	2.19147000	3.10000500	С	12.27037200	1.21194100	-3.43368700

н	12.70463900	0.28504600	-3.82958700	Н	-0.90290200	0.74970100	3.65137100
н	12.09026100	1.87162200	-4.28861700	С	-0.89021500	-1.33428100	0.84306400
н	13.01032700	1.67268500	-2.77724200	Н	-0.57819600	-1.24632400	-0.20382400
С	7.82182500	-0.33594900	-4.55941100	Н	-0.31030500	-2.14372200	1.30232200
н	7.93186700	0.45514500	-5.30729900	Н	-1.94254700	-1.64161700	0.85139300
н	8.14814400	-1.26987700	-5.03180100	Ν	0.69075600	2.54061100	1.21928400
н	6.76122500	-0.43788000	-4.31748400	С	1.72886700	2.24997300	0.44830500
Ν	8.19932700	-0.29562800	-2.08661800	С	1.49591500	1.75779600	-0.97377900
С	7.32824800	-1.34156800	-1.87090800	н	0.88527100	0.84794100	-0.97751500
С	7.45562200	-2.60669800	-2.50001200	н	0.94470200	2.50367500	-1.55786700
С	6.59261100	-3.63679800	-2.16609700	н	2.43680400	1.54514100	-1.48597800
н	8.25485100	-2.76226100	-3.21573800	С	3.09859000	2.36296300	0.84254300
С	5.54280600	-2.16591100	-0.61382600	Н	3.81720000	2.07731200	0.08231400
С	5.60206900	-3.42252000	-1.20016200	С	3.63587700	2.79053900	2.06288900
н	6.69591400	-4.60784300	-2.64450300	С	5.14770700	2.80598000	2.19479800
н	4.78719700	-1.94339900	0.13608400	н	5.47900400	2.15670900	3.01449700
н	4.90469900	-4.20068700	-0.90976600	н	5.62656700	2.45953600	1.27564100
Ν	6.36921100	-1.15182100	-0.92491300	н	5.51586700	3.81724400	2.40738500
Li	9.12005600	0.56073600	-0.58100600	Ν	2.80852300	3.16039200	3.04273000
				С	1.75287100	4.30264700	6.16950100
r				С	2.88641800	4.56527900	6.93574000
С	-2.69004100	1.10613600	0.57530500	С	4.12911200	4.33414300	6.33995500
С	-1.34252000	1.18096100	0.94603600	С	4.20639300	3.86140300	5.03625200
С	-0.64248800	2.39614100	0.73360400	С	3.01149900	3.61581000	4.31419600
C	-1.30621000	3.51045000	0.16072900	Ν	1.79714400	3.84909900	4.91671800
С	-2.65456300	3.38370700	-0.19328100	н	5.04533200	4.52343500	6.89455600
С	-3.34800800	2.19361300	0.00714300	Н	0.75727300	4.46380500	6.57998600
н	-3.23624000	0.18019700	0.73697600	Н	2.79686200	4.93396800	7.95186700
н	-3.17201900	4.23367500	-0.63134100	н	5.17191200	3.68616800	4.58348900
н	-4.39481500	2.11473200	-0.27448200	Li	0.92177800	3.19030600	3.04340200
С	-0.59232300	4.84635700	-0.03310900				
н	0.47486500	4.68065000	0.14123800	4g			
С	-1.06767700	5.88131200	1.00695500	С	-1.37705900	-0.31516800	0.00000600
н	-0.90771100	5.52176000	2.03118600	С	0.01698100	-0.29895600	0.00057400
н	-0.52365900	6.82701100	0.89374100	С	0.70671600	0.92036800	0.00012200
н	-2.13842600	6.09144600	0.89670600	С	-0.00776800	2.12836600	-0.00090500
С	-0.74311000	5.40399100	-1.46063000	С	-1.39830500	2.11139500	-0.00147300
н	-0.14852300	6.31800500	-1.57696200	С	-2.08303100	0.89008600	-0.00101600
н	-0.40240000	4.68098300	-2.21037900	Н	-1.91211900	-1.26064600	0.00035900
н	-1.78369100	5.65825900	-1.69408800	н	0.57758900	-1.23167200	0.00137400
С	-0.66655300	-0.01732300	1.60894900	н	0.54948900	3.06025400	-0.00124000
H	0.41048400	0.17334800	1.62066900	н	-1.95429700	3.04489200	-0.00227200
C	-1.11788600	-0.15996000	3.07691000	н	-3.16981100	0.87966200	-0.00146200
н	-2.19726200	-0.34297400	3.14320600	С	2.18702600	0.92888500	0.00072700
н	-0.60160800	-0.99546400	3.56535800				

Н	2.65553300	-0.08104700	0.00165700	н	5.52493400	1.12010100	1.06055400
0	2.87526800	1.93167800	0.00028600	н	6.02613900	2.72872200	1.59011400
				Ν	3.32957600	2.99888900	2.81610700
IN1				С	3.27467400	4.11177500	6.13827800
С	-2.75785600	2.05034100	1.33408400	С	4.58704900	4.39497500	6.51421200
С	-1.38138800	1.84964400	1.49748300	С	5.57941100	4.21063600	5.54891400
С	-0.47604100	2.80926300	0.96902200	С	5.24437000	3.73815600	4.28621900
С	-0.97597700	3.93917300	0.26731100	С	3.89063300	3.43450300	3.99288900
С	-2.36099100	4.09492500	0.13308300	Ν	2.92738600	3.65695300	4.93482500
С	-3.25451300	3.16607200	0.66281900	н	6.61748600	4.44307500	5.77611900
н	-3.45317800	1.31759500	1.73728500	н	2.45455400	4.26224400	6.83956700
н	-2.74799500	4.96087500	-0.39902400	н	4.81575400	4.75945300	7.51042400
н	-4.32620100	3.30242900	0.54037400	н	6.01176800	3.63131100	3.53232800
С	-0.03805600	4.99139700	-0.32264700	Li	1.44489800	3.45554600	3.07361100
н	0.98383800	4.61706700	-0.21672200	С	-4.14020300	6.82838300	4.80543900
С	-0.11302800	6.32111300	0.45386000	С	-3.38307100	5.82176200	4.21024200
н	0.14947100	6.17959500	1.50723400	С	-1.99185900	5.78966900	4.39126100
н	0.58210000	7.05562100	0.02882600	С	-1.36025800	6.77234300	5.17250400
н	-1.12129400	6.75206500	0.41108800	С	-2.11932900	7.77358600	5.76678000
С	-0.29411800	5.22784600	-1.82354700	С	-3.50768300	7.80124000	5.58350100
н	0.45263300	5.91871700	-2.23299600	н	-5.21686900	6.85701800	4.66532900
н	-0.23883800	4.29348500	-2.39340100	н	-3.85823900	5.06050200	3.59595300
н	-1.28216000	5.66755200	-2.00537800	н	-0.28290400	6.72892300	5.29917200
С	-0.88088100	0.61889700	2.25196700	н	-1.63720200	8.53499000	6.37329200
н	0.20848900	0.59780200	2.15822300	н	-4.09720400	8.58609800	6.04995200
С	-1.20537600	0.70514700	3.75682200	С	-1.21987300	4.71632600	3.75248000
н	-2.28810900	0.74657000	3.92976600	н	-1.80454000	3.96823000	3.19161000
н	-0.81474000	-0.17095000	4.28845500	0	0.00337500	4.61897200	3.81575900
н	-0.75856800	1.59706800	4.21169400				
С	-1.42287700	-0.69404000	1.65557700	HBpin			
н	-1.18658100	-0.77596200	0.58866600	С	-1.65307200	1.07174000	0.65444300
н	-0.98004300	-1.55676300	2.16767500	С	-1.22463500	-0.37835700	0.87074600
н	-2.51174200	-0.77253500	1.76119000	н	-0.14993000	-0.44249500	1.07660400
Ν	0.90521100	2.70889300	1.27514000	н	-1.75917500	-0.79263500	1.73148600
С	1.74852700	2.11468100	0.44411100	н	-1.45148600	-1.00170800	0.00303400
С	1.23760800	1.53013000	-0.86704800	С	-1.50769300	1.86403500	1.96029100
н	0.44861900	0.79189200	-0.68278900	н	-0.47506400	1.85644200	2.32477800
н	0.79451600	2.30871400	-1.49810100	Н	-1.82381300	2.90410900	1.83319800
н	2.03803400	1.04634200	-1.43140900	н	-2.14617000	1.40939700	2.72388600
С	3.13872300	1.94514000	0.69263700	С	-1.00439100	1.78941400	-0.59485600
н	3.67990500	1.40850300	-0.07892900	С	-0.62883800	0.82646100	-1.72896200
С	3.89487900	2.32954700	1.81029300	н	-1.46240300	0.16422900	-1.98320700
С	5.35222700	1.89204500	1.81465500	н	-0.37840300	1.40944500	-2.62057100
н	5.64270100	1.48994300	2.79109700	н	0.23682000	0.20973000	-1.46540900

С	0.17091500	2.71274900	-0.27972700	Н	0.67763500	2.68649800	-1.38576900
н	0.51819100	3.18954200	-1.20181000	С	1.92342100	2.31111000	0.90994300
н	-0.11042000	3.50146700	0.42150300	н	2.34476300	1.91458400	-0.00877800
н	1.00826800	2.14781300	0.14583200	С	2.69222100	2.09187200	2.05303400
0	-3.07438100	1.08446000	0.32125200	С	4.01921400	1.37437400	1.79968700
0	-2.10670300	2.60518700	-1.09575100	н	3.91776400	0.28356500	1.84434800
В	-3.26506400	2.06631000	-0.61020200	н	4.38513300	1.62115900	0.79940600
н	-4.34375000	2.42055300	-0.96643900	н	4.78406600	1.66418100	2.52524600
				Ν	2.35638500	2.53070400	3.28278300
IN2				С	3.90069000	2.63802100	6.52201300
С	-3.70481800	3.47468100	1.95152200	С	4.27095800	1.33533200	6.78464000
С	-2.37774500	3.02869200	1.94442000	С	3.94753500	0.36183100	5.82792600
С	-1.34909200	3.94519700	1.59577900	С	3.31563900	0.74333900	4.66277100
С	-1.67874800	5.28412300	1.25971700	С	2.99659100	2.10676400	4.40743700
С	-3.02373500	5.67574600	1.27128700	Ν	3.27496100	3.02648200	5.38791700
С	-4.03670100	4.78567200	1.61923300	н	4.17849700	-0.68583500	6.00399400
Н	-4.49526900	2.77766700	2.22011300	н	4.09754900	3.44127700	7.22261600
н	-3.28177300	6.69603100	0.99805900	н	4.77512300	1.08710400	7.71177800
Н	-5.07504200	5.10754600	1.62124800	н	3.02198100	0.00683500	3.92521900
С	-0.60486700	6.29107200	0.85543800	Li	1.01589400	4.04114800	3.42426400
Н	0.36646600	5.82552300	1.05041700	С	-4.29668200	5.59560200	7.35644900
С	-0.67120100	7.58870000	1.68166300	С	-3.56760500	5.52639500	6.17125900
Н	-0.58995300	7.38337600	2.75493900	С	-2.30056300	4.92443900	6.16055100
Н	0.15156500	8.25868800	1.40650800	С	-1.76103100	4.39554100	7.34512900
н	-1.60783000	8.13357700	1.51295600	с	-2.48944100	4.47167100	8.52699700
С	-0.66986400	6.60660400	-0.65270300	С	-3.75600200	5.06912600	8.53222900
Н	0.13407900	7.29591800	-0.93878100	н	-5.27973900	6.05749700	7.36685200
Н	-0.56689800	5.69819200	-1.25595700	н	-3.97560400	5.92820700	5.24655300
Н	-1.62464100	7.07655700	-0.91908700	н	-0.77351000	3.94541400	7.31474200
С	-2.07978600	1.57706200	2.31880200	н	-2.07576100	4.06985400	9.44762200
н	-1.00192800	1.42174500	2.22608300	н	-4.32178300	5.12550400	9.45850200
С	-2.45163000	1.27095100	3.78309200	С	-1.55062500	4.86307800	4.89750000
н	-3.52308600	1.41858200	3.96641200	н	-2.01348900	5.37687600	4.03600800
н	-2.21404900	0.22820900	4.02739800	0	-0.47729500	4.28674900	4.76485300
н	-1.89705400	1.91375500	4.47336800	С	4.11010200	6.53476900	5.13373200
С	-2.77932500	0.58639100	1.36675300	С	5.60663400	6.85594700	5.09214500
н	-2.52023100	0.78222200	0.32056100	н	5.81769000	7.69004000	4.41197200
н	-2.48632900	-0.44386800	1.60287900	н	5.94547400	7.14359600	6.09333100
н	-3.87095500	0.64657200	1.45308200	Н	6.19332600	5.98972700	4.77690800
Ν	0.01271700	3.55842800	1.70988000	С	3.34863900	7.71707700	5.76117600
с	0.61348800	2.86755000	0.76782100	Н	3.52720200	8.65803900	5.22775900
с	-0.05012600	2.58368100	-0.57406700	Н	2.27168900	7.52379300	5.77981400
н	-0.41997100	1.55112300	-0.60534800	Н	3.68672000	7.83884200	6.79537100
н	-0.89384200	3.24895700	-0.76765600	с	3.49511900	6.08168500	3.75638000

С	4.47412300	5.24941000	2.91273800	н	-8.18268900	-5.95320900	2.01593100
н	4.92568700	4.44971600	3.50630200	С	-6.16276200	-1.73507900	2.32132900
н	3.93445400	4.79182900	2.07798400	н	-5.26561900	-1.34234800	2.81248400
н	5.27726700	5.87177700	2.50200700	С	-7.38285400	-1.09564300	3.01004000
С	2.92319100	7.21393400	2.90332100	н	-7.43715300	-1.38215200	4.06580800
н	2.51806000	6.80968600	1.96878700	н	-7.32347700	-0.00170900	2.95420600
н	2.11855400	7.74067700	3.42145400	н	-8.32366800	-1.39471800	2.53356400
н	3.70373700	7.93875000	2.64234200	С	-6.09745000	-1.31591700	0.83880100
0	3.91146400	5.38758300	5.96262300	н	-6.08725200	-0.22290400	0.74299200
0	2.40504100	5.23710100	4.19247600	н	-5.19802300	-1.70621600	0.35025300
В	2.76617100	4.65626100	5.48013700	н	-6.96614600	-1.69325400	0.28549500
н	1.81846900	4.55666800	6.23183900	С	-3.80390400	-6.10427300	3.66744700
				н	-2.97935300	-5.39583600	3.78775700
TS1				С	-4.12057100	-6.66333300	5.06912100
С	-4.25863800	0.91724600	8.03804900	н	-4.94257800	-7.38912500	5.03064000
С	-3.81276100	2.31324900	8.47434800	н	-3.24220100	-7.17745400	5.48105600
н	-4.47452500	3.08253500	8.06007000	н	-4.40387400	-5.85380200	5.74914400
н	-3.85552600	2.38478300	9.56599700	С	-3.31912300	-7.21871500	2.72044700
н	-2.78810700	2.52721200	8.16193600	н	-3.07765500	-6.82784600	1.72500900
С	-5.61674000	0.58325000	8.67060000	н	-2.41900600	-7.69736800	3.12522500
н	-6.37468200	1.32879300	8.40669300	н	-4.07628500	-8.00153700	2.59286100
н	-5.97950900	-0.40238000	8.36855200	Ν	-3.83800300	-3.18404200	3.33438600
н	-5.50622700	0.57948200	9.75960500	С	-2.81861700	-3.04493500	2.53345300
С	-4.21443200	0.66613900	6.47854900	С	-2.81583700	-3.57776100	1.10784100
С	-3.09796500	1.44652600	5.77082500	н	-2.35176000	-2.85289300	0.43049000
н	-2.13938500	1.31977700	6.28330300	н	-2.21761400	-4.49635900	1.05280100
н	-2.98972300	1.06523700	4.75084200	н	-3.82085300	-3.80850000	0.75192200
н	-3.32508800	2.51672400	5.71820100	С	-1.58715500	-2.39140500	2.92088600
С	-5.54180900	0.87193600	5.75556700	н	-0.91919600	-2.17756900	2.09145700
н	-5.41975200	0.65686100	4.68916700	С	-1.08326300	-2.09046200	4.16948200
н	-6.31939100	0.21282900	6.14677900	С	0.31004000	-1.46305200	4.19508600
н	-5.87902800	1.91048500	5.85280400	н	1.10904900	-2.21298800	4.22848500
0	-3.28102600	-0.03412300	8.52883800	н	0.46752400	-0.86982300	3.29013200
0	-3.85207100	-0.74324900	6.39815900	н	0.43641800	-0.80644300	5.06112100
В	-3.24142700	-1.09298900	7.61270700	Ν	-1.79002800	-2.23631100	5.32569400
н	-4.11633700	-2.17334600	8.09869100	С	-1.40445100	-2.08046600	8.90171600
С	-6.16322500	-6.04130500	2.76382000	С	-0.22939800	-2.73575100	9.15265900
С	-4.99952100	-5.34089200	3.10144400	С	0.48219800	-3.25491300	8.04878800
С	-4.98729200	-3.93382900	2.93752800	С	-0.00386000	-3.07660600	6.77886500
С	-6.14041200	-3.25344800	2.47793600	С	-1.22749000	-2.37519600	6.52645800
С	-7.27386900	-4.00331900	2.14258000	Ν	-1.90405800	-1.88823100	7.64360800
С	-7.29220400	-5.38801500	2.27874400	Н	1.40206400	-3.81274300	8.20350300
н	-6.18516300	-7.12109800	2.88793700	Н	-2.00910100	-1.65623300	9.69403100
н	-8.15853400	-3.49289700	1.77023300	н	0.12011400	-2.85717300	10.17093600

н	0.50114100	-3.51512400	5.92810300	С	-7.62865600	-3.81126900	3.20041500
Li	-3.82291100	-2.54040900	5.25079800	С	-7.72973200	-5.18642400	3.39086100
С	-7.22548200	-3.09812400	10.64257100	н	-6.66192200	-6.99724000	3.81122000
С	-6.01217600	-3.19888600	9.96332300	н	-8.52683800	-3.23560700	2.99258500
С	-5.97839000	-3.21286200	8.56357900	Н	-8.69753100	-5.67835700	3.33679900
С	-7.17848500	-3.13313200	7.85011800	С	-6.32128200	-1.64982500	3.02629600
С	-8.39497300	-3.03391400	8.52802400	н	-5.32442600	-1.31387000	3.33205400
С	-8.42191100	-3.01391200	9.92420600	С	-7.34715800	-0.86360700	3.86253700
н	-7.24121200	-3.09057400	11.72974200	н	-7.24145300	-1.07986400	4.93179800
н	-5.07994100	-3.26891800	10.52227000	н	-7.20721600	0.21418100	3.71799800
н	-7.13408300	-3.17174000	6.76607300	н	-8.37877600	-1.09859200	3.57587500
н	-9.32454100	-2.97918100	7.96645800	С	-6.47310800	-1.31326700	1.52873100
н	-9.36961600	-2.93972600	10.45164200	н	-6.37687000	-0.23330000	1.36196700
С	-4.66166700	-3.33142600	7.81746200	н	-5.71034700	-1.81808800	0.92609400
н	-3.92937400	-3.92892000	8.40637200	н	-7.45504600	-1.62593700	1.15267000
0	-4.68775700	-3.52189100	6.53908000	С	-4.09873200	-6.18684100	4.03187200
				Н	-3.20981600	-5.55234200	3.97520900
IN3				С	-4.16218000	-6.74617600	5.46678200
С	-4.07445300	1.07886900	7.89530700	Н	-5.02838000	-7.40491400	5.60115200
С	-3.72262500	2.29419800	8.75576500	Н	-3.26019500	-7.33035800	5.68913000
н	-4.21778800	3.19913200	8.38412800	Н	-4.24265900	-5.94283300	6.20495600
н	-4.05981700	2.12475100	9.78400700	С	-3.91785500	-7.33084900	3.01476400
н	-2.64465000	2.47203800	8.78068600	н	-3.86894100	-6.95569200	1.98666200
С	-5.57389800	0.76684600	8.03519600	н	-2.99198400	-7.88173400	3.22058400
н	-6.19925600	1.62056300	7.75098000	Н	-4.74444600	-8.04966200	3.06460900
н	-5.85694900	-0.09512200	7.42480000	Ν	-3.97480300	-3.25151100	3.65051400
н	-5.78532800	0.52192700	9.08117500	С	-3.07260900	-3.27597600	2.69938000
С	-3.60430000	1.17252300	6.39113100	С	-3.34169000	-3.91610900	1.34446100
С	-2.27430900	1.92744300	6.22646900	н	-2.93569300	-3.28953200	0.54344400
н	-1.51859800	1.55892300	6.92642800	н	-2.83752200	-4.88810200	1.27723700
н	-1.90255300	1.76722600	5.20922000	н	-4.40665400	-4.07503900	1.16688500
н	-2.39451800	3.00520400	6.38280200	С	-1.75781100	-2.70624100	2.82765000
С	-4.64158900	1.74886500	5.42747200	н	-1.20558900	-2.66160400	1.89384000
н	-4.23610900	1.75713900	4.40970700	С	-1.05274500	-2.27256900	3.94268600
н	-5.55794800	1.15477800	5.42187400	С	0.35396000	-1.74907000	3.65740700
н	-4.89618100	2.78102200	5.69618800	н	1.10894000	-2.54428400	3.68168000
0	-3.33153900	-0.05310300	8.38506800	н	0.38642500	-1.30896200	2.65715400
0	-3.37443600	-0.20964700	6.05609800	н	0.65457800	-0.98370400	4.37826200
В	-3.07964700	-0.92892100	7.27916500	Ν	-1.58744700	-2.22774900	5.18673300
н	-3.98165200	-2.39278900	9.24326800	С	-0.85213100	-1.21141100	8.54223800
С	-6.57986000	-5.92505300	3.65167500	С	0.42815800	-1.66021600	8.78500600
С	-5.31821500	-5.32197000	3.71619100	С	1.07366300	-2.37325600	7.76176900
С	-5.22541800	-3.92189500	3.50915700	С	0.43433500	-2.57042700	6.55687000
С	-6.39357700	-3.15612900	3.26487800	С	-0.87360500	-2.05643200	6.31837300

N	-1.49748000	-1.40211300	7.36728900
н	2.06838600	-2.78279100	7.91886200
н	-1.42934200	-0.66651200	9.27915500
н	0.89738000	-1.47756500	9.74479500
н	0.90361400	-3.15556500	5.77755000
Li	-3.57480300	-2.19195600	5.27939600
с	-6.11159900	-6.01684100	9.12494700
с	-5.03848000	-5.12684600	9.11004700
с	-5.06370000	-3.98606700	8.29587800
с	-6.18527200	-3.75736200	7.49307500
с	-7.25583800	-4.65464700	7.49605000
с	-7.22509100	-5.78418800	8.31378400
н	-6.07420100	-6.89719700	9.76173000
н	-4.16842700	-5.32142700	9.73487800
н	-6.21203100	-2.88001600	6.85565000
н	-8.10844500	-4.47165500	6.84794500
н	-8.05807800	-6.48238100	8.31565800
с	-3.89912100	-3.01829200	8.34203400
н	-2.96004700	-3.58768900	8.43035400
0	-3.86308500	-2.17335600	7.20828200

5.48689000	2.49395100	-2.98111700
6.56192300	1.54178400	-2.44013500
6.56397500	1.52523100	-1.34551800
6.34878400	0.52822500	-2.79386600
7.56284000	1.82265600	-2.78398000
5.50378100	2.49376600	-4.50829800
5.44960100	1.46390300	-4.87600500
4.65498200	3.04352300	-4.92114200
6.42922500	2.94056600	-4.88917200
4.70219900	3.72565800	-1.12076600
4.20278900	1.97315200	-2.53561300
3.87477800	2.65998900	-1.38498700
2.48808900	0.33369600	-0.31224700

С Н Н Н Н Н О О В Н

-	-
5	σ
_	∈.

0			
С	-1.67924700	0.62739100	-0.22839500
С	-0.37473400	0.48975100	-0.70002100
С	0.62072700	1.40085300	-0.32381900
С	0.28771600	2.45622300	0.52920200
С	-1.02045400	2.59730400	0.99835500
С	-2.00700000	1.68489700	0.62407400
н	-2.44129900	-0.08636000	-0.53092100
н	-0.12789500	-0.33248800	-1.36952800
н	1.05630900	3.16562900	0.81580900
н	-1.26713100	3.42478200	1.65889300
н	-3.02434500	1.79666100	0.98988900
С	2.03476300	1.19482300	-0.82460500
н	2.02962100	0.96376500	-1.89642300
0	2.83778200	2.34451900	-0.56857700
С	5.52095000	3.92241200	-2.30494000
С	6.90312000	4.39849200	-1.86302800
н	7.57455600	4.50355600	-2.72299100
н	6.81583800	5.37713800	-1.38028700
н	7.35684700	3.71022700	-1.14638700
С	4.83262600	5.00566800	-3.14647700
н	5.42356800	5.27392200	-4.02869000
н	3.84129600	4.68138300	-3.47918800
н	4.70469900	5.90171100	-2.53156800