Supporting Information:

A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6'-dimethyl-substituted 2,2'-bipyridine ligands for light-emitting electrochemical cells

Marco Meyer,^a Lorenzo Mardegan,^b Daniel Tordera,^b Alessandro Prescimone,^a Michele Sessolo,^{*b} Edwin C. Constable,^b and Catherine E. Housecroft^{*a}

Contents

Experimental and analytical data

Figs. S1–S64	¹ H, HMQC and HMBC NMR spectra and mass spectra of the copper(I) complexes
Table S1	Crystallographic data
Figs. S65–S74	Structural figures
Figs. S75–S78	Cyclic voltammograms
Table S2	PL properties of thin films and electroluminescence maxima for LECs
Fig. S79	Photography of powdered samples of [Cu(POP)(N^N)][A] complexes
Fig. S80	Current efficiency of the best working LECs

Experimental and analytical data

General Procedures for $[PF_6]^-$ and $[BF_4]^-$ salts of the copper(I) complexes

POP-containing compounds were synthesized by the following procedure: POP (1.1 eq.) and $[Cu(MeCN)_4][PF_6]$ or $[Cu(MeCN)_4][BF_4]$ (1.0 eq.) were dissolved in CH₂Cl₂ (20 mL) and the reaction mixture was stirred for 1.5 h. The respective N^N ligand (1.0 eq.) was added, followed by stirring the mixture for 2 h. The solvent was then removed under reduced pressure. The residue was purified by precipitation from CH₂Cl₂ with Et₂O, followed by centrifugation and the decantation of the supernatant. This step was repeated four times. Then the product was washed with cyclohexane (100 mL).

Compounds containing xantphos were prepared according to the following procedure: A solution of the respective N^N-ligand (1.0 eq.) and xantphos (1.1 eq.) in CH_2CI_2 (10 mL) was added dropwise to a CH_2CI_2 solution (10 mL) of $[Cu(MeCN)_4][PF_6]$ or $[Cu(MeCN)_4][BF_4]$ (1.0 eq.). The reaction mixture was then stirred for 2 h before the solvent was removed under reduced pressure. The residue was purified by precipitation from CH_2CI_2 with Et_2O , followed by centrifugation and the decantation of the supernatant. This step was repeated four times. Then the product was washed with cyclohexane (100 mL) and dried under high vacuum.

General Procedures for $[BPh_4]^-$ and $[BAr^F_4]^-$ salts of the copper(I) complexes

The following procedure was adapted from a literature method¹. To synthesise the $[BPh_4]^-$ and $[BAr^{F_4}]^-$ salts, an ion exchange was carried out starting with the respective $[PF_6]^-$ salt.

The $[PF_6]^-$ salt (1.0 eq.) of the desired complex was dissolved in a minimal amount of MeOH at 45 °C while sonicating. Then, NaBPh₄ (1.3 eq.) or NaBAr^F₄ (1.3 eq.), respectively, was added into the warm solution. The mixture was sonicated and H₂O (60 mL) was added to precipitate the product. The product was then washed with H₂O and dried under vacuum. For the $[BPh_4]^-$ salts, the crude product was dissolved in a minimal amount of MeOH/CH₂Cl₂ (3:1) while sonicating, followed by another addition of NaBPh₄ (1.3 eq.). The mixture was sonicated and H₂O (60 mL) was added to precipitate the product. The product so the number of MeOH/CH₂Cl₂ (3:1) while sonicating, followed by another addition of NaBPh₄ (1.3 eq.). The mixture was sonicated and H₂O (60 mL) was added to precipitate the product. The product was then washed with H₂O and dried under vacuum. The products were purified as follows. The crude product was dissolved in CH₂Cl₂ (20 mL) and water was added (15 mL). The mixture was vigorously shaken, centrifuged and the aqueous phase was removed. The organic phase was dried with MgSO₄. The product was precipitated from CH₂Cl₂ with Et₂O, followed by centrifugation and the decantation of the

supernatant. This step was repeated three times. Then the product was washed with cyclohexane (100 mL) and dried under high vacuum.

[Cu(POP)(Mebpy)][PF₆]

The reagents were POP (137 mg, 0.252 mmol), Mebpy (42.6 mg, 0.250 mmol) and $[Cu(MeCN)_4][PF_6]$ (93.3 mg, 0.250 mmol). $[Cu(POP)(Mebpy)][PF_6]$ was isolated as a yellow solid (165 mg, 0.180 mmol, 72%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.68 (d, ²J_{HH} = 4.7 Hz, 1H, H^{A6}), 8.50 (d, ²J_{HH} = 8.1 Hz, 1H, H^{A3}), 8.41 (d, ²J_{HH} = 7.9 Hz, 1H, H^{B3}), 8.10 (m, 1H, H^{B4}), 8.08 (m, 1H, H^{A4}), 7.47 (d, ²J_{HH} = 7.7 Hz, 1H, H^{B5}), 7.43 (m, 2H, H^{D4}), 7.41 (m, 1H, H^{A5}), 7.41 (m, 2H, H^{C5}), 7.38 (m, 2H, H^{D4}), 7.27 (m, 4H, H^{D3}), 7.27 (m, 4H, H^{D3}), 7.19 (m, 2H, H^{C6}), 7.15 (m, 2H, H^{C4}), 7.14 (m, 4H, H^{D2}), 7.10 (m, 4H, D2'), 6.90 (m, 2H, H^{C3}), 2.35 (s, 3H, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 160.0 (s, C⁸⁶), 158.9 (pseudo-t, 2J_{CP} = 6.0 Hz, C^{C1}), 153.5 (s, C^{A2}), 152.6 (s, C^{B2}), 150.3 (s, C^{A6}), 140.1 (s, C^{B4}), 139.7 (s, C^{A4}), 135.0 (s, C^{C3}), 134.0 (pseudo-t, ²J_{CP} = 7.5 Hz, C^{D2}), 133.8 (pseudo-t, ²J_{CP} = 7.2 Hz, C^{D2}), 133.2 (s, C^{D4}), 132.1 (pseudo-t, ¹J_{CP} = 15.7 Hz, C^{D1}+C^{D1}), 131.0 (s, C^{D4}), 131.0 (s, C^{C5}), 129.7 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3}+C^{D3}), 127.1 (s, C^{B5}), 126.6 (s, C^{A5}), 126.1 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C4}), 125.1 (pseudo-t, ¹J_{CP} = 14.3 Hz, C^{C2}), 123.6 (s, C^{A3}), 121.2 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C6}), 120.9 (s, C^{B3}), 26.4 (s, C^{B6-Me}).

 $^{19}F\{^{1}H\}$ NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –72.7 (d, $^{1}\!J_{FP}$ = 707 Hz).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –12.9 (broad, FWHM \approx 320 Hz, P^{POP}), –144.2 (hept., ¹J_{PF} = 707 Hz, P^{PF6}). ESI(+)-MS (DCM/MeOH, m/z): 600.88 [M–PF₆–(bpy)]⁺ (calc. 601.09), 770.88 [M–PF₆]⁺ (base peak, calc. 717.17).

ESI(–)-MS (DCM/MeOH, m/z): 144.96 [PF₆]⁻ (calc. 144.96).

Found: C 61.53, H 4.24, N 3.33; C₄₇H₃₈CuF₆N₂OP₃ requires C 61.54, H 4.18, N 3.05.

[Cu(POP)(Me₂bpy)][PF₆]

The reagents were POP (136 mg, 0.252 mmol), Me_2bpy (46.2 mg, 0.251 mmol) and $[Cu(MeCN)_4][PF_6]$ (93.2 mg, 0.250 mmol). $[Cu(POP)(Me_2bpy)][PF_6]$ was isolated as a yellow solid (191 mg, 0.205 mmol, 82%).

¹H NMR (500 MHz, acetone-d₆) δ/ppm 8.23 (d, ²J_{HH} = 8.0, 2H, H^{B3}), 8.02 (m, 2H, H^{B4}), 7.45 (m, 2H, H^{C5}), 7.44 (m, 2H, H^{B5}), 7.35 (m, 4H, H^{D4}), 7.30 (m, 2H, H^{C4}), 7.29 (m, 2H, H^{C3}), 7.21 (m, 8H, H^{D3}), 7.11 (m, 8H, H^{D2}), 7.06 (m, 2H, H^{C6}), 2.32 (s, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 159.6 (s, C^{B6}), 159.1 (pseudo-t, ²J_{CP} = 6.0 Hz, C^{C1}), 153.3 (s, C^{B2}), 139.9 (s, C^{B4}), 134.5 (s, C^{C3}), 133.9 (pseudo-t, ²J_{CP} = 7.8 Hz, C^{D2}), 133.3 (s, C^{C5}), 132.8 (pseudo-t, ¹J_{CP} = 16.2 Hz, C^{C2}), 130.8 (s, C^{D4}), 129.6 (pseudo-t, ³J_{CP} = 4.6 Hz, C^{D3}), 127.1 (s, C^{B5}), 126.2 (pseudo-t, ¹J_{CP} = 13.9 Hz, C^{D1}), 126.2 (pseudo-t, ³J_{CP} = 2.2 Hz, C^{C4}), 121.1 (pseudo-t, ³J_{CP} = 2.0 Hz, C^{C6}), 120.9 (s, C^{B3}), 26.9 (s, C^{B6-Me}).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ /ppm –72.7 (d, ¹J_{FP} = 707 Hz).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.6 (broad, FWHM ≈ 300 Hz, P^{POP}), −144.2 (hept., ¹J_{PF} = 707 Hz, P^{PF6}).

ESI(+)-MS (DCM/MeOH, m/z): 600.88 [M–PF₆–(Me₂bpy)]⁺ (calc. 601.09), 784.88 [M–PF₆]⁺ (base peak, calc. 785.19).

ESI(–)-MS (DCM/MeOH, m/z): 144.96 [PF₆][–] (calc. 144.96).

Found: C 62.03, H 4.51, N 2.94; C₄₈H₄₀CuF₆N₂OP₃ requires C 61.90, H 4.33, N 3.01.

[Cu(xantphos)(Mebpy)][PF₆]

The reagents were xantphos (175 mg, 0.302 mmol), Mebpy (50.1 mg, 0.294 mmol) and $[Cu(MeCN)_4][PF_6]$ (111 mg, 0.298 mmol). $[Cu(xantphos)(Mebpy)][PF_6]$ was isolated as a yellow solid (264 mg, 0.276 mmol, 94%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.54 (m, 1H, H^{A3}), 8.54 (m, 1H, H^{A6}), 8.45 (d, ²J_{HH} = 8.0 Hz, 1H, H^{B3}), 8.15 (m, 1H, H^{B4}), 8.10 (m, 1H, H^{A4}), 7.85 (dd, ²J_{HH} = 7.8 Hz, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.52 (d, ²J_{HH} = 7.4 Hz, 1H, H^{A5}), 7.49 (m, 1H, H^{B5}), 7.39 (m, 2H, H^{D4}), 7.34 (m, 2H, H^{D4}), 7.30 (d, ²J_{HH} = 7.7 Hz, 2H, H^{C4}), 7.26 (m, 4H, H^{D3}), 7.19 (m, 4H, H^{D3}), 7.17 (m, 4H, ^{D2}), 6.92 (m, 4H, H^{D2}), 6.66 (m, 2H, H^{C3}), 2.03 (m, 3H, H^{B6-Me}), 1.89 (m, 3H, H^{xantphos-Me'}), 1.69 (m, 3H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 159.4 (s, C⁸⁶), 155.8 (pseudo-t, ²*J*_{CP} = 6.1 Hz, C^{C1}), 153.3 (s, C^{A2}), 152.4 (s, C^{B2}), 149.9 (s, C^{A6}), 140.3 (s, C^{B4}), 139.9 (s, C^{A4}), 135.0 (s, C^{C6}), 133.9 (pseudo-t, ²*J*_{CP} = 8.0 Hz, C^{D2}), 133.5 (pseudo-t, ²*J*_{CP} = 7.8 Hz, C^{D2}), 132.6 (pseudo-t, ¹*J*_{CP} = 16.5 Hz, C^{D1}), 132.5 (pseudo-t, ¹*J*_{CP} = 17.6 Hz, C^{D1}), 131.5 (s, C^{C3}), 131.1 (s, C^{D4}), 131.0 (s, C^{D4}), 129.9 (pseudo-t, ³*J*_{CP} = 4.8 Hz, C^{D3}), 129.7 (pseudo-t, ³*J*_{CP} = 4.7 Hz, C^{D3}), 128.5 (s, C^{C5}), 127.1 (s, C^{A5}), 127.0 (s, C^{B5}), 126.3 (pseudo-t, ³*J*_{CP} = 2.6 Hz, C^{C4}), 123.8 (s, C^{A3}), 121.5 (pseudo-t, ¹*J*_{CP} = 13.5 Hz, C^{C2}), 121.1 (s, C^{B3}), 36.9 (s, C^{xantphos-bridge}), 30.3 (s, C^{xantphos-Me}), 26.4 (s, C^{xantphos-Me'}), 26.3 (s, C^{B6-Me}).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ /ppm –72.6 (d, ¹J_{FP} = 707 Hz).

 $^{31}P{^{1}H} NMR (202 MHz, 298 K, acetone-d_6) \delta/ppm - 12.8 (broad, FWHM \approx 280 Hz, P^{xantphos}), -144.2 (hept., <math>^{1}J_{PF} = 707 Hz, P^{PF6})$.

ESI(+)-MS (DCM/MeOH, m/z): 641.04 [M–PF₆–(Mebpy)]⁺ (calc. 641.12), 811.14 [M–PF₆]⁺ (base peak, calc. 811.21).

ESI(–)-MS (DCM/MeOH, m/z): 144.94 [PF₆]⁻ (calc. 144.96).

Found: C 62.68, H 4.87, N 3.00; C₅₀H₄₂CuF₆N₂OP₃ requires C 62.73, H 4.42, N 2.93.

Dalton Trans.

[Cu(xantphos)(Me₂bpy)][PF₆]

The reagents were xantphos (145 mg, 0.250 mmol), Me_2bpy (0.45.8 mg, 0.248 mmol) and $[Cu(MeCN)_4][PF_6]$ (94.3 mg, 0.253 mmol). $[Cu(xantphos)(Me_2bpy)][PF_6]$ was isolated as a yellow solid (214 mg, 0.221 mmol, 89%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.19 (d, ²J_{HH} = 8.0 Hz, 2H, H^{B3}), 7.98 (m, 2H, H^{B4}), 7.83 (dd, ²J_{HH} = 7.9, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.42 (m, 4H, H^{D4}), 7.39 (m, 2H, H^{B5}), 7.31 (m, 2H, H^{C4}), 7.23 (m, 8H, H^{D3}), 7.17 (m, 8H, H^{D2}), 6.95 (m, 2H, H^{C3}), 2.14 (s, 6H, H^{6-Me}), 1.76 (s, 6H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 159.2 (s, C⁸⁶), 155.9 (pseudo-t, ²J_{CP} = 6.5 Hz, C^{C1}), 153.1 (s, C⁸²), 139.9 (s, C⁸⁴), 134.9 (s, C^{C6}), 134.0 (pseudo-t, ²J_{CP} = 7.6 Hz, C^{D2}), 132.5 (pseudo-t, ¹J_{CP} = 16.0 Hz, C^{D1}), 131.1 (s, C^{C3}), 131.0 (s, C^{D4}), 129.7 (pseudo-t, ³J_{CP} = 4.5 Hz, C^{D3}), 128.6 (s, C^{C5}), 126.7 (s, C⁸⁵), 126.3 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C4}), 122.7 (pseudo-t, ¹J_{CP} = 12.2 Hz, C^{C2}), 121.0 (s, C^{B3}), 36.9 (s, C^{xantphos-bridge}), 28.6 (s, C^{B6-Me}), 27.0 (s, C^{xantphos-Me}).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ /ppm –72.6 (d, ¹J_{FP} = 707 Hz).

 $^{31}P{^{1}H} NMR (202 MHz, 298 K, acetone-d_6) \delta/ppm - 13.7 (broad, FWHM \approx 285 Hz, Pxantphos), -144.2 (hept., <math>^{1}J_{PF} = 707 Hz, P^{PF6}$).

 $\mathsf{ESI}(+)-\mathsf{MS}\;(\mathsf{DCM}/\mathsf{MeOH},\;\mathsf{m/z}):\;641.05\;[\mathsf{M}-\mathsf{PF}_6-(\mathsf{Me}_2\mathsf{bpy})]^+\;(\mathsf{calc.}\;641.12),\;825.14\;[\mathsf{M}-\mathsf{PF}_6]^+\;(\mathsf{base}\;\mathsf{peak},\;\mathsf{calc.}\;825.22).$

ESI(–)-MS (DCM/MeOH, m/z): 144.94 [PF₆][–] (calc. 144.96).

Found: C 62.96, H 4.87, N 3.11; $C_{51}H_{44}CuF_6N_2OP_3$ requires C 63.06, H 4.57, N 2.88.

[Cu(POP)(Mebpy)][BF₄]

The reagents were POP (136 mg, 0.252 mmol), Mebpy (42.6 mg, 0.250 mmol) and [Cu(MeCN)₄][BF₄] (78.7 mg, 0.250 mmol). [Cu(POP)(Mebpy)][BF₄] was isolated as a yellow solid (182 mg, 0.213 mmol, 85%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.68 (d, ²J_{HH} = 5.1 Hz, 1H, H^{A6}), 8.50 (d, ²J_{HH} = 8.2 Hz, 1H, H^{A3}), 8.42 (d, ²J_{HH} = 7.9 Hz, 1H, H^{B3}), 8.10 (m, 1H, H^{B4}), 8.08 (m, 1H, H^{A4}), 7.47 (d, ²J_{HH} = 7.7 Hz, 1H, H^{B5}), 7.43 (m, 2H, H^{D4}), 7.41 (m, 1H, H^{A5}), 7.41 (m, 2H, H^{C5}), 7.38 (m, 2H, H^{D4}), 7.27 (m, 4H, H^{D3}), 7.27 (m, 4H, H^{D3'}), 7.19 (m, 2H, H^{C6}), 7.15 (m, 2H, H^{C4}), 7.14 (m, 4H, H^{D2}), 7.10 (m, 4H, H^{D2'}), 6.90 (m, 2H, H^{C3}), 2.35 (s, 3H, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 159.9 (s, C⁸⁶), 158.9 (pseudo-t, ²*J*_{CP} = 6.0 Hz, C^{C1}), 153.4 (s, C^{A2}), 152.6 (s, C^{B2}), 150.3 (s, C^{A6}), 140.1 (s, C^{B4}), 139.7 (s, C^{A4}), 135.0 (s, C^{C3}), 134.1 (pseudo-t, ²*J*_{CP} = 7.5 Hz, C^{D2}), 133.8 (pseudo-t, ²*J*_{CP} = 7.2 Hz, C^{D2}), 133.2 (s, C^{D4}), 132.1 (pseudo-t, ¹*J*_{CP} = 15.7 Hz, C^{D1}+C^{D1'}), 131.0 (s, C^{D4'}), 131.0 (s, C^{C5}), 129.7 (pseudo-t, ³*J*_{CP} = 4.7 Hz, C^{D3}+C^{D3'}), 127.1 (s, C^{B5}), 126.6 (s, C^{A5}), 126.1 (pseudo-t, ³*J*_{CP} = 2.3 Hz, C^{C4}), 125.1 (pseudo-t, ¹*J*_{CP} = 14.3 Hz, C^{C2}), 123.6 (s, C^{A3}), 121.2 (pseudo-t, ³*J*_{CP} = 2.3 Hz, C^{C6}), 120.9 (s, C^{B3}), 26.4 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ/ppm –0.9 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –151.8 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.0 (broad, FWHM ≈ 310 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 600.88 [M–BF₄–(Mebpy)]⁺ (calc. 601.09), 770.88 [M–BF₄]⁺ (base peak, calc. 771.17).

ESI(–)-MS (DCM/MeOH, m/z): 86.96 [BF₄]⁻ (calc. 87.00).

Found: C 65.50, H 4.37, N 3.28; C₄₇H₃₈BCuF₄N₂OP₂ requires C 65.71, H 4.46, N 3.26.

[Cu(POP)(Me₂bpy)][BF₄]

The reagents were POP (136 mg, 0.252 mmol), Me_2bpy (46.1 mg, 0.250 mmol) and $[Cu(MeCN)_4][BF_4]$ (78.7 mg, 0.250 mmol). $[Cu(POP)(Me_2bpy)][BF_4]$ was isolated as a yellow solid (192 mg, 0.220 mmol, 88%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.24 (d, ²J_{HH} = 8.0, 2H, H^{B3}), 8.02 (m, 2H, H^{B4}), 7.45 (m, 2H, H^{C5}), 7.44 (m, 2H, H^{B5}), 7.35 (m, 4H, H^{D4}), 7.30 (m, 2H, H^{C4}), 7.28 (m, 2H, H^{C3}), 7.21 (m, 8H, H^{D3}), 7.11 (m, 8H, H^{D2}), 7.06 (m, 2H, H^{C6}), 2.32 (s, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 159.6 (s, C^{B6}), 159.1 (pseudo-t, ²*J*_{CP} = 6.0 Hz, C^{C1}), 153.3 (s, C^{B2}), 139.9 (s, C^{B4}), 134.5 (s, C^{C3}), 133.9 (pseudo-t, ²*J*_{CP} = 7.8 Hz, C^{D2}), 133.3 (s, C^{C5}), 132.8 (pseudo-t, ¹*J*_{CP} = 16.3 Hz, C^{C2}), 130.8 (s, C^{D4}), 129.6 (pseudo-t, ³*J*_{CP} = 4.6 Hz, C^{D3}), 127.1 (s, C^{B5}), 126.2 (pseudo-t, ¹*J*_{CP} = 14.0 Hz, C^{D1}), 126.2 (pseudo-t, ³*J*_{CP} = 2.2 Hz, C^{C4}), 121.0 (pseudo-t, ³*J*_{CP} = 2.0 Hz, C^{C6}), 120.9 (s, C^{B3}), 26.9 (s, C^{B6-Me}).

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR (160 MHz, 298 K, acetone-d_6) δ/ppm –0.9 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –151.8 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –13.7 (broad, FWHM \approx 310 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 600.88 [M–BF₄–(Me₂bpy)]⁺ (calc. 601.09), 784.88 [M–BF₄]⁺ (base peak, calc. 785.19).

ESI(–)-MS (DCM/MeOH, m/z): 86.96 [BF₄]⁻ (calc. 87.00).

Found: C 65.70, H 4.51, N 3.26; C₄₈H₄₀BCuF₄N₂OP₂ requires C 66.03, H 4.62, N 3.21.

[Cu(xantphos)(Mebpy)][BF₄]

The reagents were xantphos (147 mg, 0.253 mmol), Mebpy (42.5 mg, 0.254 mmol) and [Cu(MeCN)₄][BF₄] (78.6 mg, 0.250 mmol). [Cu(xantphos)(Mebpy)][BF₄] was isolated as a yellow solid (205 mg, 0.228 mmol, 91%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.54 (m, 1H, H^{A3}), 8.54 (m, 1H, H^{A6}), 8.46 (d, ²J_{HH} = 8.0 Hz, 1H, H^{B3}), 8.15 (m, 1H, H^{B4}), 8.10 (m, 1H, H^{A4}), 7.85 (dd, ²J_{HH} = 7.8 Hz, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.52 (d, ²J_{HH} = 7.6 Hz, 1H, H^{A5}), 7.49 (m, 1H, H^{B5}), 7.39 (m, 2H, H^{D4}), 7.34 (m, 2H, H^{D4}), 7.30 (d, ²J_{HH} = 7.7 Hz, 2H, H^{C4}), 7.26 (m, 4H, H^{D3}), 7.19 (m, 4H, H^{D3}), 7.17 (m, 4H, D²), 6.92 (m, 4H, H^{D2}), 6.66 (m, 2H, H^{C3}), 2.03 (m, 3H, H^{B6-Me}), 1.89 (m, 3H, H^{xantphos-Me'}), 1.69 (m, 3H, H^{xantphos-Me'}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 159.3 (s, C⁸⁶), 155.9 (pseudo-t, ²*J*_{CP} = 6.3 Hz, C^{C1}), 153.3 (s, C^{a2}), 152.4 (s, C^{B2}), 149.9 (s, C^{A6}), 140.3 (s, C^{B4}), 139.9 (s, C^{A4}), 135.0 (s, C^{C6}), 133.9 (pseudo-t, ²*J*_{CP} = 8.0 Hz, C^{D2}), 133.5 (pseudo-t, ²*J*_{CP} = 7.8 Hz, C^{D2}), 132.6 (pseudo-t, ¹*J*_{CP} = 16.6 Hz, C^{D1}), 132.5 (pseudo-t, ¹*J*_{CP} = 17.6 Hz, C^{D1}), 131.5 (s, C^{C3}), 131.1 (s, C^{D4}), 130.9 (s, C^{D4}), 129.9 (pseudo-t, ³*J*_{CP} = 4.7 Hz, C^{D3}), 129.7 (pseudo-t, ³*J*_{CP} = 4.7 Hz, C^{D3}), 128.5 (s, C^{C3}), 127.1 (s, C^{A5}), 127.0 (s, C^{B5}), 126.3 (pseudo-t, ³*J*_{CP} = 2.5 Hz, C^{C4}), 123.8 (s, C^{A3}), 121.5 (pseudo-t, ¹*J*_{CP} = 13.7 Hz, C^{C2}), 121.1 (s, C^{B3}), 36.9 (s, C^{xantphos-bridge}), 30.3 (s, C^{xantphos-Me}), 26.4 (s, C^{xantphos-Me'}), 26.3 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ /ppm –0.9 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –151.9 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −12.9 (broad, FWHM ≈ 320 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 640.88 [M–BF₄–(Mebpy)]⁺ (calc. 641.12), 810.88 [M–BF₄]⁺ (base peak, calc. 811.21).

ESI(-)-MS (DCM/MeOH, m/z): 86.96 [BF₄]⁻ (calc. 87.00).

Found: C 66.48, H 5.06, N 3.31; C₅₀H₄₂BCuF₄N₂OP₂ requires C 66.79, H 4.71, N 3.12.

[Cu(xantphos)(Me₂bpy)][BF₄]

The reagents were xantphos (145 mg, 0.250 mmol), Me_2bpy (46.1 mg, 0.250 mmol) and $[Cu(MeCN)_4][BF_4]$ (78.7 mg, 0.250 mmol). $[Cu(xantphos)(Me_2bpy)][BF_4]$ was isolated as a yellow solid (189 mg, 0.208 mmol, 83%).

¹H NMR (500 MHz, acetone-d₆) δ/ppm

8.20 (d, ${}^{2}J_{HH}$ = 8.0 Hz, 2H, H^{B3}), 7.98 (m, 2H, H^{B4}), 7.83 (dd, ${}^{2}J_{HH}$ = 7.9, ${}^{3}J_{HH}$ = 1.4 Hz, 2H, H^{C5}), 7.41 (m, 4H, H^{D4}), 7.39 (m, 2H, H^{B5}), 7.31 (m, 2H, H^{C4}), 7.23 (m, 8H, H^{D3}), 7.17 (m, 8H, H^{D2}), 6.94 (m, 2H, H^{C3}), 2.14 (s, 6H, H^{6-Me}), 1.76 (s, 6H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 159.2 (s, C^{B6}), 155.9 (pseudo-t, ²*J*_{CP} = 6.5 Hz, C^{C1}), 153.1 (s, C^{B2}), 139.9 (s, C^{B4}), 134.9 (s, C^{C6}), 134.0 (pseudo-t, ²*J*_{CP} = 7.7 Hz, C^{D2}), 132.5 (pseudo-t, ¹*J*_{CP} = 16.0 Hz, C^{D1}), 131.1 (s, C^{C3}), 131.0 (s, C^{D4}), 129.7 (pseudo-t, ³*J*_{CP} = 4.6 Hz, C^{D3}), 128.6 (s, C^{C5}), 126.7 (s, C^{B5}), 126.3 (pseudo-t, ³*J*_{CP} = 2.3 Hz, C^{C4}), 122.7 (pseudo-t, ¹*J*_{CP} = 12.2 Hz, C^{C2}), 121.1 (s, C^{B3}), 36.9 (s, C^{xantphos-bridge}), 28.6 (s, C^{B6-Me}), 27.0 (s, C^{xantphos-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ/ppm –0.9 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –151.9 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ /ppm –12.9 (broad, FWHM \approx 270 Hz, P^{xantphos}).

ESI(+)-MS (DCM/MeOH, m/z): 640.88 [M–BF₄–(Me₂bpy)]⁺ (calc. 641.12), 824.88 [M–BF₄]⁺ (base peak, calc. 825.22).

ESI(–)-MS (DCM/MeOH, m/z): 86.96 [BF₄]⁻ (calc. 87.00).

Found: C 50.79, H 3.40, N 2.56; C₄₈H₃₄Br₂CuF₆N₂OP₃·CH₂Cl₂ requires C 50.26, H 3.18, N 2.39.

[Cu(POP)(Mebpy)][BPh₄]

The reagents were [Cu(POP)(Mebpy)][PF₆] (153 mg, 0.167 mmol) and NaBPh₄ (149.4 mg, 0.436 mmol); two ion exchange steps executed, half amount of NaBPh₄ added per ion exchange step. [Cu(POP)(Mebpy)][BPh₄] was isolated as a yellow solid (131 mg, 0.120 mmol, 72%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.65 (d, ²*J*_{HH} = 5.1 Hz, 1H, H^{A6}), 8.42 (d, ²*J*_{HH} = 8.2 Hz, 1H, H^{A3}), 8.34 (d, ²*J*_{HH} = 7.9 Hz, 1H, H^{B3}), 8.05 (m, 1H, H^{B4}), 8.02 (m, 1H, H^{A4}), 7.42 (d, ²*J*_{HH} = 7.7 Hz, 1H, H^{B5}), 7.41 (m, 2H, H^{D4}), 7.37 (m, 1H, H^{A5}), 7.36 (m, 2H, H^{C5}), 7.35 (m, 2H, H^{D4'}), 7.34 (m, 8H, H^{E3}), 7.26 (m, 4H, H^{D3}), 7.26 (m, 4H, H^{D3'}), 7.16 (m, 2H, H^{C6}), 7.13 (m, 2H, H^{C4}), 7.12 (m, 4H, H^{D2}), 7.10 (m, 4H, H^{D2'}), 6.91 (m, 2H, H^{C3}), 6.91 (m, 8H, H^{E2}), 6.76 (m, 4H, H^{E4}), 2.32 (s, 3H, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 164.7 (q, ¹J_{CB} = 49.1 Hz, C^{E1}), 159.8 (s, C⁸⁶), 158.6 (pseudo-t, ²J_{CP} = 6.0 Hz, C^{C1}), 153.2 (s, C^{A2}), 152.3 (s, C^{B2}), 150.0 (s, C^{A6}), 139.7 (s, C^{B4}), 139.4 (s, C^{A4}), 136.8 (pseudo-q, ²J_{CP} = 1.4 Hz, C^{E3}), 134.7 (s, C^{C3}), 133.7 (pseudo-t, ²J_{CP} = 7.5 Hz, C^{D2}), 133.5 (pseudo-t, ²J_{CP} = 7.2 Hz, C^{D2'}), 132.9 (s, C^{D4}), 131.9 (pseudo-t, ¹J_{CP} = 15.7 Hz, C^{D1+C^{D1'}), 130.7 (s, C^{D4'}), 130.7 (s, C^{C5}), 129.5 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3+C^{D3'}), 126.8 (s, C^{B5}), 126.4 (s, C^{A5}), 125.8 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C4}), 125.8 (pseudo-q, ²J_{CP} = 3.6 Hz, C^{E2}), 124.8 (pseudo-t, ¹J_{CP} = 14.3 Hz, C^{C2}), 123.3 (s, C^{A3}), 122.0 (m, C^{E4}), 121.0 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C6}), 120.6 (s, C^{B3}), 26.2 (s, C^{B6-Me}).}}

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ /ppm –6.9 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −12.9 (broad, FWHM ≈ 310 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 601.66 [M–BPh₄–(Mebpy)]⁺ (calc. 601.09), 771.66 [M–BPh₄]⁺ (base peak, calc. 771.17).

ESI(–)-MS (DCM/MeOH, m/z): 318.88 [BPh₄]⁻ (calc. 319.23).

Found: C 77.82, H 5.80, N 2.52; C₇₁H₅₈BCuN₂OP₂ requires C 78.12, H 5.36, N 2.57.

[Cu(POP)(Me₂bpy)][BPh₄]

Dalton Trans.

The reagents were $[Cu(POP)(Me_2bpy)][PF_6]$ (238 mg, 0.255 mmol) and NaBPh₄ (237 mg, 0.687 mmol); two ion exchange steps executed, half amount of NaBPh₄ added per ion exchange step. $[Cu(POP)(Me_2bpy)][BPh_4]$ was isolated as a yellow solid (218 mg, 0.197 mmol, 77%).

¹H NMR (500 MHz, acetone-d₆) δ/ppm 8.15 (d, ²J_{HH} = 8.0, 2H, H^{B3}), 7.96 (m, 2H, H^{B4}), 7.43 (m, 2H, H^{C5}), 7.39 (m, 2H, H^{B5}), 7.34 (m, 4H, H^{D4}), 7.34 (m, 8H, H^{E3}), 7.29 (m, 2H, H^{C4}), 7.28 (m, 2H, H^{C3}), 7.19 (m, 8H, H^{D3}), 7.10 (m, 8H, H^{D2}), 7.05 (m, 2H, H^{C6}), 6.91 (m, 8H, H^{E2}), 6.76 (m, 4H, H^{E4}), 2.31 (s, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 164.7 (q, ¹J_{CB} = 49.1 Hz, C^{E1}), 159.4 (s, C^{B6}), 158.9 (pseudo-t, ²J_{CP} = 6.0 Hz, C^{C1}), 153.1 (s, C^{B2}), 139.6 (s, C^{B4}), 136.8 (pseudo-q, ²J_{CP} = 1.4 Hz, C^{E3}), 134.2 (s, C^{C3}), 133.6 (pseudo-t, ²J_{CP} = 7.8 Hz, C^{D2}), 133.0 (s, C^{C5}), 132.5 (pseudo-t, ¹J_{CP} = 16.3 Hz, C^{C2}), 130.5 (s, C^{D4}), 129.3 (pseudo-t, ³J_{CP} = 4.6 Hz, C^{D3}), 126.8 (s, C^{B5}), 125.9 (pseudo-t, ¹J_{CP} = 14.0 Hz, C^{D1}), 125.9 (pseudo-t, ³J_{CP} = 2.2 Hz, C^{C4}), 125.8 (pseudo-q, ²J_{CP} = 3.6 Hz, C^{E2}), 122.0 (m, C^{E4}), 120.8 (pseudo-t, ³J_{CP} = 2.0 Hz, C^{C6}), 120.7 (s, C^{B3}), 26.7 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ/ppm –6.5 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.6 (broad, FWHM ≈ 250 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 601.66 [M–BPh₄–(Me₂bpy)]⁺ (calc. 601.09), 785.66 [M–BPh₄]⁺ (base peak, calc. 785.19).

ESI(–)-MS (DCM/MeOH, m/z): 318.88 [BPh₄]⁻ (calc. 319.23).

Found: C 78.17, H 6.23, N 2.34; C₇₂H₆₀BCuN₂OP₂ requires C 78.22, H 5.47, N 2.53.

[Cu(xantphos)(Mebpy)][BPh₄]

The reagents were [Cu(xantphos)(Mebpy)][PF₆] (149 mg, 0.156 mmol) and NaBPh₄ (143 mg, 0.418 mmol); two ion exchange steps executed, half amount of NaBPh₄ added per ion exchange step. [Cu(xantphos)(Mebpy)][BPh₄] was isolated as a yellow solid (141 mg, 0.125 mmol, 80%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.53 (m, 1H, H^{A3}), 8.52 (m, 1H, H^{A6}), 8.43 (d, ²J_{HH} = 8.0 Hz, 1H, H^{B3}), 8.12 (m, 1H, H^{B4}), 8.08 (m, 1H, H^{A4}), 7.85 (dd, ²J_{HH} = 7.8 Hz, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.50 (d, ²J_{HH} = 7.6 Hz, 1H, H^{A5}), 7.48 (m, 1H, H^{B5}), 7.38 (m, 2H, H^{D4}), 7.35 (m, 2H, H^{D4'}), 7.34 (m, 8H, H^{E3}), 7.29 (d, ²J_{HH} = 7.7 Hz, 2H, H^{C4}), 7.26 (m, 4H, H^{D3'}), 7.19 (m, 4H, H^{D3}), 7.17 (m, 4H, H^{D2'}), 6.92 (m, 4H, H^{D2}), 6.91 (m, 8H, H^{E2}), 6.76 (m, 4H, H^{E4}), 6.66 (m, 2H, H^{C3}), 2.03 (m, 3H, H^{B6-Me}), 1.89 (m, 3H, H^{xantphos-Me'}), 1.68 (m, 3H, H^{xantphos-Me'}). ¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 164.7 (q, ¹J_{CB} = 49.1 Hz, C^{E1}), 158.5 (s, C^{B6}), 153.1 (m, C^{C1}), 152.1 (s, C^{A2}), 149.7 (s, C^{B2}), 149.1 (s, C^{A6}), 140.1 (s, C^{B4}), 139.6 (s, C^{A4}), 136.8 (pseudo-q, ²J_{CP} = 1.4 Hz, C^{E3}), 134.8 (s, C^{C6}), 133.6 (pseudo-t, ²J_{CP} = 8.0 Hz, C^{D2}), 133.3 (pseudo-t, ²J_{CP} = 7.8 Hz, C^{D2'}), 132.3 (pseudo-t, ¹J_{CP} = 16.6 Hz, C^{D1'}), 132.2 (pseudo-t, ¹J_{CP} = 17.6 Hz, C^{D1}), 131.3 (s, C^{C3}), 131.2 (s, C^{D4'}), 130.8 (s, C^{D4}), 129.6 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3'}), 129.5 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3}), 128.3 (s, C^{C5}), 126.8 (s, C^{A5}), 126.9 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ /ppm -6.5 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −12.9 (broad, FWHM ≈ 270 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 640.88 [M–BPh₄–(Mebpy)]⁺ (calc. 641.12), 810.66 [M–BPh₄]⁺ (base peak, calc. 811.21).

ESI(–)-MS (DCM/MeOH, m/z): 318.88 [BPh₄]⁻ (calc. 319.23).

Found: C 50.79, H 3.40, N 2.56; C₄₈H₃₄B_{r2}CuF₆N₂OP₃·CH₂Cl₂ requires C 50.26, H 3.18, N 2.39.

[Cu(xantphos)(Me₂bpy)][BPh₄]

The reagents were $[Cu(xantphos)(Mebpy)][PF_6]$ (195 mg, 0.201 mmol) and NaBPh₄ (184 mg, 0.535 mmol); two ion exchange steps executed, half amount of NaBPh₄ added per ion exchange step. $[Cu(xantphos)(Me_2bpy)][BPh_4]$ was isolated as a yellow solid (153 mg, 0.176 mmol, 78%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.15 (d, ²J_{HH} = 8.0 Hz, 2H, H^{B3}), 7.95 (m, 2H, H^{B4}), 7.83 (dd, ²J_{HH} = 7.9, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.40 (m, 4H, H^{D4}), 7.39 (m, 2H, H^{B5}), 7.34 (m, 8H, H^{E3}), 7.30 (m, 2H, H^{C4}), 7.22 (m, 8H, H^{D3}), 7.17 (m, 8H, H^{D2}), 6.95 (m, 2H, H^{C3}), 6.91 (m, 8H, H^{E2}), 6.76 (m, 4H, H^{E4}), 2.13 (s, 6H, H^{6-Me}), 1.75 (s, 6H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 164.7 (q, ¹*J*_{CB} = 49.1 Hz, C^{E1}), 159.1 (s, C^{B6}), 155.8 (pseudo-t, ²*J*_{CP} = 6.5 Hz, C^{C1}), 153.1 (s, C^{B2}), 139.7 (s, C^{B4}), 136.8 (pseudo-q, ²*J*_{CP} = 1.4 Hz, C^{E3}), 134.9 (s, C^{C6}), 133.8 (pseudo-t, ²*J*_{CP} = 7.7 Hz, C^{D2}), 132.4 (pseudo-t, ²*J*_{CP} = 16.0 Hz, C^{D1}), 131.0 (s, C^{C3}), 130.9 (s, C^{D4}), 129.6 (pseudo-t, ³*J*_{CP} = 4.6 Hz, C^{D3}), 128.5 (s, C^{C5}), 126.6 (s, C^{B5}), 126.2 (pseudo-t, ³*J*_{CP} = 2.3 Hz, C^{C4}), 125.8 (pseudo-q, ²*J*_{CP} = 3.6 Hz, C^{E2}), 122.2 (pseudo-t, ¹*J*_{CP} = 12.2 Hz, C^{C2}), 122.0 (m, C^{E4}), 120.8 (s, C^{B3}), 36.8 (s, C^{xantphos-bridge}), 28.4 (s, C^{B6-Me}), 26.8 (s, C^{xantphos-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ/ppm –6.5 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.3 (broad, FWHM ≈ 240 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 641.66 [M–BPh₄–(Me₂bpy)]⁺ (calc. 641.12), 825.66 [M–BPh₄]⁺ (base peak, calc. 826.42).

ESI(–)-MS (DCM/MeOH, m/z): 318.88 [BPh₄][–] (calc. 319.23).

Found: C 78.10, H 5.72, N 2.69; C₇₅H₆₄BCuN₂OP₂ requires C 78.63, H 5.63, N 2.45.

[Cu(POP)(Mebpy)][BArF₄]

The reagents were $[Cu(POP)(Mebpy)][PF_6]$ (257 mg, 0.280 mmol) and NaBAr^F₄ (332 mg, 0.375 mmol). $[Cu(POP)(Mebpy)][BAr^F_4]$ was isolated as a yellow solid (381 mg, 0.232 mmol, 83%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.68 (d, ²J_{HH} = 5.1 Hz, 1H, H^{A6}), 8.50 (d, ²J_{HH} = 8.1 Hz, 1H, H^{A3}), 8.41 (d, ²J_{HH} = 7.9 Hz, 1H, H^{B3}), 8.11 (m, 1H, H^{B4}), 8.07 (m, 1H, H^{A4}), 7.79 (m, 8H, H^{E2}), 7.67 (s, 4H, H^{E4}), 7.47 (d, ²J_{HH} = 7.7 Hz, 1H, H^{B5}), 7.43 (m, 2H, H^{D4}), 7.26 (m, 1H, H^{A5}), 7.24 (m, 2H, H^{C5}), 7.35 (m, 2H, H^{D4}), 7.27 (m, 4H, H^{D3}), 7.27 (m, 4H, H^{D3}), 7.18 (m, 2H, H^{C6}), 7.15 (m, 2H, H^{C4}), 7.14 (m, 4H, H^{D2}), 7.09 (m, 4H, H^{D2}), 6.90 (m, 2H, H^{C3}), 2.35 (s, 3H, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 162.2 (m, C^{E1}), 159.1 (s, C^{B6}), 158.0 (m, C^{C1}), 152.6 (s, C^{A2}), 152.5 (s, C^{A6}), 151.9 (s, C^{B2}), 139.0 (s, C^{B4}), 138.8 (s, C^{A4}), 134.6 (m, C^{E2}), 134.1 (s, C^{C3}), 133.1 (m, C^{D2}), 132.9 (m, C^{D2'}), 132.3 (s, C^{D4}), 130.1 (s, C^{D4'}), 130.1 (s, C^{C5}), 129.8 (m, C^{D1+}C^{D1'}), 128.9 (pseudo-t, ³J_{CP} = 4.6 Hz, C^{D3+}C^{D3'}), 128.0 (m, C^{E3}) 126.2 (s, C^{B5}), 125.8 (s, C^{A5}), 125.2 (m, C^{C4}), 124.7 (q, ¹J_{CF} = 271.3 Hz, C^{E3-CF3}), 124.2 (m, C^{C2}), 122.7 (s, C^{A3}), 120.3 (m, C^{C6}), 120.0 (s, C^{B3}), 117.5 (m, C^{E4}), 25.5 (s, C^{B6-Me}).

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR (160 MHz, 298 K, acetone-d_6) δ/ppm –6.6 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm -63.3 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −12.9 (broad, FWHM ≈ 280 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 601.03 [M–BAr^F₄–(Mebpy)]⁺ (calc. 601.09), 771.12 [M–BAr^F₄]⁺ (base peak, calc. 771.17).

ESI(–)-MS (DCM/MeOH, m/z): 862.00 [BAr^F₄][–] (calc. 862.06).

Found: C 58.55, H 4.33, N 1.88; C₇₉H₄₉BCuF₂₄N₂OP₂ requires C 58.05, H 3.02, N 1.71.

[Cu(POP)(Me₂bpy)][BAr^F₄]

The reagents were $[Cu(POP)(Me_2bpy)][PF_6]$ (259 mg, 0.277 mmol) and NaBAr^F₄ (331 mg, 0.374 mmol). $[Cu(POP)(Me_2bpy)][BAr^F_4]$ was isolated as a yellow solid (385 mg, 0.234 mmol, 84%).

¹H NMR (500 MHz, acetone-d₆) δ/ppm 8.23 (d, ²J_{HH} = 8.0, 2H, H^{B3}), 8.02 (m, 2H, H^{B4}), 7.79 (m, 8H, H^{E2}), 7.67 (s, 4H, H^{E4}), 7.44 (m, 2H, H^{C5}), 7.44 (m, 2H, H^{B5}), 7.35 (m, 4H, H^{D4}), 7.31 (m, 2H, H^{C4}), 7.29 (m, 2H, H^{C3}), 7.20 (m, 8H, H^{D3}), 7.11 (m, 8H, H^{D2}), 7.06 (m, 2H, H^{C6}), 2.32 (s, H^{B6-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ/ppm 162.2 (m, C^{E1}), 158.7 (s, C^{B6}), 158.2 (pseudo-t, ²J_{CP} = 6.0 Hz, C^{C1}), 152.5 (s, C^{B2}), 139.0 (s, C^{B4}), 134.6 (m, C^{E2}), 133.7 (s, C^{C3}), 133.0 (pseudo-t, ²J_{CP} = 7.8 Hz, C^{D2}), 132.5 (s, C^{C5}), 131.9 (pseudo-t, ¹J_{CP} = 16.3 Hz, C^{C2}), 129.9 (s, C^{D4}), 129.1 (qq, ²J_{CF} = 31.6 Hz, ⁴J_{CF} = 5.8 Hz, C^{E3}), 128.7 (pseudo-t, ³J_{CP} = 4.6 Hz, C^{D3}), 126.2 (s, C^{B5}), 125.4 (m, C^{D1}), 125.3 (pseudo-t, ³J_{CP} = 2.2 Hz, C^{C4}), 124.5 (q, ¹J_{CF} = 272.3 Hz, C^{E3-CF3}), 120.2 (pseudo-t, ³J_{CP} = 1.9 Hz, C^{C6}), 120.0 (s, C^{B3}), 117.6 (m, C^{E4}), 26.6 (s, C^{B6-Me}). ¹¹B{¹H</sup> NMR (160 MHz, 298 K, acetone-d₆) δ/ppm -6.5 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –63.3 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm -13.5 (broad, FWHM \approx 280 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 601.00 [M–BAr^F₄–(Me₂bpy)]⁺ (calc. 601.09), 785.11 [M–BAr^F₄]⁺ (base peak, calc. 785.19).

ESI(–)-MS (DCM/MeOH, m/z): 861.00 [BArF₄]⁻ (calc. 862.06).

Found: C 58.23, H 4.13, N 1.82; $C_{80}H_{51}BCuF_{24}N_2OP_2$ requires C 58.29, H 3.12, N 1.70.

[Cu(xantphos)(Mebpy)][BAr^F₄]

The reagents were $[Cu(xantphos)(Mebpy)][PF_6]$ (271 mg, 0.283 mmol) and NaBAr^F₄ (332 mg, 0.375 mmol). $[Cu(xantphos)(Mebpy)][BAr^F_4]$ was isolated as a yellow solid (385 mg, 0.229 mmol, 81%).

¹H NMR (500 MHz, acetone-d₆) δ /ppm 8.54 (m, 1H, H^{A3}), 8.53 (m, 1H, H^{A6}), 8.45 (d, ²J_{HH} = 7.9 Hz, 1H, H^{B3}), 8.15 (m, 1H, H^{B4}), 8.10 (m, 1H, H^{A4}), 7.85 (dd, ²J_{HH} = 7.8 Hz, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.79 (m, 8H, H^{E2}), 7.67 (s, 4H, H^{E4}), 7.52 (d, ²J_{HH} = 8.0 Hz, 1H, H^{A5}), 7.49 (m, 1H, H^{B5}), 7.38 (m, 2H, H^{D4}), 7.34 (m, 2H, H^{D4'}), 7.30 (d, ²J_{HH} = 7.7 Hz, 2H, H^{C4}), 7.26 (m, 4H, H^{D3'}), 7.19 (m, 4H, H^{D3}), 7.16 (m, 4H, H^{D2'}), 6.92 (m, 4H, H^{D2}), 6.66 (m, 2H, H^{C3}), 2.03 (m, 3H, H^{B6-Me}), 1.89 (m, 3H, H^{xantphos-Me'}), 1.69 (m, 3H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 161.7 (q, ¹J_{CB} = 49.7 Hz, C^{E1}), 158.6 (s, C^{B6}), 154.9 (pseudo-t, ²J_{CP} = 6.2 Hz, C^{C1}), 152.5 (s, C^{A2}), 151.5 (s, C^{B2}), 149.1 (s, C^{A6}), 139.4 (s, C^{B4}), 138.9 (s, C^{A4}), 134.6 (m, C^{E2}), 134.1 (s, C^{C6}), 133.0 (pseudo-t, ²J_{CP} = 8.0 Hz, C^{D2}), 132.6 (pseudo-t, ²J_{CP} = 7.9 Hz, C^{D2}), 131.7 (pseudo-t, ¹J_{CP} = 16.5 Hz, C^{D1}), 131.6 (pseudo-t, ¹J_{CP} = 17.7 Hz, C^{D1}), 130.6 (s, C^{C3}), 130.2 (s, C^{D4}), 130.1 (s, C^{D4}), 129.0 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3}), 128.8 (pseudo-t, ³J_{CP} = 4.7 Hz, C^{D3}), 127.7 (m, C^{E3}), 127.6 (s, C^{C5}), 126.2 (s, C^{B5}), 126.1 (s, C^{A5}), 125.4 (pseudo-t, ³J_{CP} = 2.5 Hz, C^{C4}), 124.5 (q, ¹J_{CF} = 271.8 Hz, C^{E3-CF3}), 122.9 (s, C^{A3}), 120.7 (pseudo-t, ¹J_{CP} = 12.9 Hz, C^{C2}), 120.2 (s, C^{B3}), 117.6 (m, C^{E4}), 36.0 (s, C^{xantphos-bridge}), 29.4 (s, C^{xantphos-Me}), 25.5 (s, C^{xantphos-Me}), 25.3 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ /ppm –6.6 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –63.3 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.0 (broad, FWHM ≈ 270 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 641.06 [M–BAr^F₄–(Mebpy)]⁺ (calc. 641.12), 811.11 [M–BAr^F₄]⁺ (base peak, calc. 811.21).

ESI(–)-MS (DCM/MeOH, m/z): 862.0 [BArF₄]⁻ (calc. 862.06).

Found: C 58.66, H 3.21, N 1.73; C₈₂H₅₃BCuF₂₄N₂OP₂ requires C 58.81, H 3.19, N 1.67.

Dalton Trans.

[Cu(xantphos)(Me₂bpy)][BArF₄]

The reagents were $[Cu(xantphos)(Mebpy)][PF_6]$ (272 mg, 0.280 mmol) and NaBArF₄ (333 mg, 0.376 mmol). $[Cu(xantphos)(Me_2bpy)][BArF_4]$ was isolated as a yellow solid (360 mg, 0.213 mmol, 76%).

¹H NMR (500 MHz, acetone-d₆) δ/ppm 8.19 (d, ²J_{HH} = 8.0 Hz, 2H, H^{B3}), 7.95 (m, 2H, H^{B4}), 7.83 (dd, ²J_{HH} = 7.8, ³J_{HH} = 1.4 Hz, 2H, H^{C5}), 7.79 (m, 8H, H^{E2}), 7.67 (s, 4H, H^{E4}), 7.40 (m, 4H, H^{D4}), 7.39 (m, 2H, H^{B5}), 7.31 (m, 2H, H^{C4}), 7.23 (m, 8H, H^{D3}), 7.17 (m, 8H, H^{D2}), 6.95 (m, 2H, H^{C3}), 2.14 (s, 6H, H^{6-Me}), 1.76 (s, 6H, H^{xantphos-Me}).

¹³C{¹H} NMR (126 MHz, acetone-d₆) δ /ppm 161.9 (m, C^{E1}), 158.3 (s, C^{B6}), 154.9 (m, C^{C1}), 152.2 (s, C^{B2}), 139.0 (s, C^{B4}), 133.9 (s, C^{C6}), 134.6 (m, C^{E2}), 133.1 (pseudo-t, ²J_{CP} = 7.6 Hz, C^{D2}), 131.50 (pseudo-t, ²J_{CP} = 16.4 Hz, C^{D1}), 130.2 (s, C^{C3}), 130.1 (s, C^{D4}), 128.2 (pseudo-t, ³J_{CP} = 4.5 Hz, C^{D3}), 127.8 (s, C^{C5}), 127.7 (m, C^{E3}), 125.8 (s, C^{B5}), 125.5 (pseudo-t, ³J_{CP} = 2.3 Hz, C^{C4}), 124.5 (q, ¹J_{CF} = 271.8 Hz, C^{E3-CF3}), 121.8 (m, C^{C2}), 120.1 (s, C^{B3}), 117.5 (m, C^{E4}), 27.72 (s, C^{xantphos-bridge}), 26.8 (s, C^{xantphos-Me}), 26.13 (s, C^{B6-Me}).

¹¹B{¹H} NMR (160 MHz, 298 K, acetone-d₆) δ/ppm –6.6 (s).

¹⁹F{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm –63.3 (s).

³¹P{¹H} NMR (202 MHz, 298 K, acetone-d₆) δ/ppm −13.7 (broad, FWHM ≈ 280 Hz).

ESI(+)-MS (DCM/MeOH, m/z): 641.07 [M–BAr^F₄–(Me₂bpy)]⁺ (calc. 641.12), 825.16 [M–BAr^F₄]⁺ (base peak, calc. 826.42).

ESI(–)-MS (DCM/MeOH, m/z): 862.00 [BAr^F₄][–] (calc. 862.06).

Found: C 59.12, H 3.56, N 1.75; C₈₃H₅₅BCuF₂₄N₂OP₂ requires C 59.04, H 3.28, N 1.66.

Fig. S2 ¹H NMR spectrum of [Cu(POP)(Mebpy)][PF₆] (500 MHz, 298 K, acetone-*d*₆). * = residual acetone-*d*₅; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S3 The aromatic region of the HMQC spectrum (500 MHz 1 H, 126 MHz 13 C{ 1 H}, acetone- d_{6} , 298 K) of [Cu(POP)(Mebpy)][PF₆]. Scale: δ / ppm.

Journal Name

Fig. S4 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][PF₆]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S5 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Me₂bpy)][PF₆].

Fig. S6 ¹H NMR spectrum of $[Cu(POP)(Me_2bpy)][PF_6]$ (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S7 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][PF₆]. Scale: δ / ppm.

Fig. S8 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][PF₆]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

MS Spectrum Positive Full Scan Zoomed View MassPeaks:11 Spectrum Mode:Averaged 0.033-0.083(5-11) Base Peak:811.14(5565669) BG Mode:Averaged 0.167-2.983(21-359) Segment 1 - Event 1

Fig. S9 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Mebpy)][PF₆].

Fig. S10 ¹H NMR spectrum of [Cu(xantphos)(Mebpy)][PF₆] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO.

Fig. S11 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][PF₆]. Scale: δ / ppm.

Journal Name

Fig. S12 Part of the HMBC spectrum (500 MHz 1H, 126 MHz $^{13}C{^{1}H}$, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][PF₆]. Scale: δ / ppm. ** = H₂O and HDO.

200

250

300

350

400

450

m/z

150

100

Fig. S14 ¹H NMR spectrum of $[Cu(xantphos)(Me_2bpy)][PF_6]$ (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO.

Fig. S15 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][PF₆]. Scale: δ / ppm.

Fig. S16 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][PF₆]. Scale: δ / ppm. ** = H₂O and HDO.

Fig. S17 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Mebpy)][BF₄].

Fig. S18 ¹H NMR spectrum of [Cu(POP)(Mebpy)][BF₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S19 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BF₄]. Scale: δ / ppm.

Fig. S20 Part of the HMBC spectrum (500 MHz 1H, 126 MHz $^{13}C{^1H}$, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BF₄]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S21 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Me₂bpy)][BF₄].

Fig. S22 ¹H NMR spectrum of [Cu(POP)(Me₂bpy)][BF₄] (500 MHz, 298 K, acetone-d6). * = residual acetone-d₅; ** = H₂O and HDO; § $= CH_2CI_2.$

Fig. S23 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone-*d*₆, 298 K) of [Cu(POP)(Me₂bpy)][BF₄]. Scale: δ / ppm.

Fig. S24 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][BF₄]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S25 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Mebpy)][BF4].

Fig. S26 ¹H NMR spectrum of [Cu(xantphos)(Mebpy)][BF₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S27 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BF₄]. Scale: δ / ppm.

Journal Name

Fig. S28 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BF₄]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S29 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Me2bpy)][BF₄].

Fig. S30 ¹H NMR spectrum of $[Cu(xantphos)(Me_2bpy)][BF_4]$ (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S31 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][BF₄]. Scale: δ / ppm.

Fig. S32 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][BF₄]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S33 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Mebpy)][BPh₄].

32 | J. Name., 2012, 00, 1-3

Fig. S34 ¹H NMR spectrum of [Cu(POP)(Mebpy)][BPh₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO.

Fig. S35 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BPh₄]. Scale: δ / ppm.

Fig. S36 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BPh_4]. Scale: δ / ppm. ** = H₂O and HDO.

Fig. S37 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Me₂bpy)][BPh₄].

This journal is © The Royal Society of Chemistry 20xx

Fig. S38 ¹H NMR spectrum of [Cu(POP)(Me₂bpy)][BPh₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S39 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][BPh₄]. Scale: δ / ppm.

Fig. S40 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][BPh₄]. Scale: δ / ppm. ** = H₂O and HDO.

ARTICLE

Fig. S41 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Mebpy)][BPh₄].

Fig. S42 ¹H NMR spectrum of [Cu(xantphos)(Mebpy)][BPh₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S43 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BPh₄]. Scale: δ / ppm.

Fig. S44 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BPh₄]. Scale: δ / ppm. ** = H₂O and HDO; § = CH₂Cl₂.

Fig. S45 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Me₂bpy)][BPh₄].

This journal is © The Royal Society of Chemistry 20xx

Fig. S46 ¹H NMR spectrum of [Cu(xantphos)(Me₂bpy)][BPh₄] (500 MHz, 298 K, acetone-d6). * = residual acetone-d₅; ** = H₂O and HDO; $\S = CH_2CI_2$.

Fig. S47 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone-d₆, 298 K) of [Cu(xantphos)(Me₂bpy)][BPh₄]. Scale: δ / ppm.

Fig. S48 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][BPh₄]. Scale: δ / ppm. ** = H₂O and HDO.

Fig. S49 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Mebpy)][BArF₄].

Fig. S50 ¹H NMR spectrum of [Cu(POP)(Mebpy)][BArF₄] (500 MHz, 298 K, acetone-d6). * = residual acetone-d₅; ** = H₂O and HDO.

Fig. S51 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BArF₄]. Scale: δ / ppm.

Fig. S52 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Mebpy)][BArF₄]. Scale: δ / ppm. ** = H₂O and HDO.

Please do not adjust margins

Fig. S53 The ESI mass spectrum (positive and negative mode) of [Cu(POP)(Me₂bpy)][BArF₄].

This journal is © The Royal Society of Chemistry 20xx

Fig. S55 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone-d₆, 298 K) of [Cu(POP)(Me₂bpy)][BAr^F₄]. Scale: δ / ppm.

Please do not adjust margins

Fig. S56 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(POP)(Me₂bpy)][BArF₄]. Scale: δ / ppm. ** = H₂O and HDO.

ARTICLE

Fig. S57 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Mebpy)][BArF₄].

Fig. S58 ¹H NMR spectrum of [Cu(xantphos)(Mebpy)][BAr^F₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO.

Fig. S59 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BAr^F₄]. Scale: δ / ppm.

Journal Name

Fig. S60 Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Mebpy)][BArF₄]. Scale: δ / ppm. ** = H₂O and HDO.

Fig. S61 The ESI mass spectrum (positive and negative mode) of [Cu(xantphos)(Me₂bpy)][BArF₄].

This journal is © The Royal Society of Chemistry 20xx

Fig. S62 ¹H NMR spectrum of [Cu(xantphos)(Me₂bpy)][BAr^F₄] (500 MHz, 298 K, acetone-d6). * = residual acetone- d_5 ; ** = H₂O and HDO.

Fig. S63 The aromatic region of the HMQC spectrum (500 MHz ¹H, 126 MHz ¹³C{¹H}, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][BAr^F₄]. Scale: δ / ppm.

Fig. S64. Part of the HMBC spectrum (500 MHz 1H, 126 MHz ${}^{13}C{}^{1}H$, acetone- d_6 , 298 K) of [Cu(xantphos)(Me₂bpy)][BAr^F₄]. Scale: δ / ppm. ** = H₂O and HDO.

Table S1 Crystallographic data for the Cu(I) complexes

Compound	[Cu(POP)(Mebpy)][PF ₆]∙ 0.5CH₂Cl₂·0.3Et₂O	[Cu(xantphos)(Mebpy)][PF ₆]· 0.5CH₂Cl₂·Et₂O	[Cu(xantphos)(Mebpy)][BF₄]· CH₂Cl₂· Et₂O
Formula	$C_{48.70}H_{41.70}CICuF_6N_2O_{1.30}P_3$	$C_{54,50}H_{53}CICuF_6N_2O_2P_3$	$C_{55}H_{54}BCl_2CuF_4N_2O_2P_2$
Formula weight	981.64	1073.89	1058.19
Crystal colour and habit	Yellow block	Yellow block	Yellow block
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P21/n	РĪ	ΡĪ
a, b, c / Å	9.7279(9), 16.4029(15), 29.365(3)	11.0667(8), 15.0405(11), 18.1887(14)	10.8320(5), 14.9163(6), 18.2441(8)
α, β, γ / °	90, 96.379(2), 90	109.125(2), 96.617(2), 109.348(2)	109.7369(15), 93.2992(17), 110.6852(16)
U / ų	4656.6(7)	2612.4(3)	2542.84(19)
Dc / Mg m ⁻³	1.400	1.365	1.382
Ζ	4	2	2
Radiation type	Cu-Κα	Cu-Kα	Си-Ка
μ / mm ⁻¹	2.704	2.467	2.649
Т/К	150	150	150
Refln. collected (R _{int})	27579 (0.0258)	33044(0.0307)	33057 (0.0267)
Unique refln.	8442	9401	9409
Refln. for refinement	8258	9314	8707
Parameters	615	645	547
Threshold	<i>l</i> > 2σ(<i>l</i>)	<i>l</i> > 2σ(<i>l</i>)	<i>l</i> > 2σ(<i>l</i>)
R1 (R1 all data)	0.0534 (0.0541)	0.0569 (0.0573)	0.0610 (0.0645)
wR2 (wR2 all data)	0.1426 (0.1431)	0.1806 (0.1813)	0.1758 (0.1805)
Goodness of fit	1.152	1.078	1.042
CCDC deposition number	2081386	2081394	2081392
Compound	[Cu(xantphos)(Me ₂ bpy)][PF ₆]	[Cu(xantphos)(Me₂bpy)][BF₄]· 0.5C ₆ H ₁₂ ·0.8Me₂CO	[Cu(xantphos)(Me₂bpy)][BPh₄]· 0.7Me₂CO
Formula	C ₅₁ H ₄₄ CuF ₆ N ₂ OP ₃	C _{56.4} H _{54.8} BCuF ₄ N ₂ O _{1.8} P ₂	C77.10H68.20BCuN2O1.70P2
Formula weight	971.33	1001.71	1186.22
Crystal colour and habit	Yellow block	Yellow block	Yellow plate
Crystal system	Orthorhombic	Triclinic	Orthorhombic
Space group	P212121	РĪ	Pna21
a, b, c / Å	19.7640(3), 19.7573(3), 22.6092(4)	11.0536(7), 14.3637(9), 18.0991(12)	28.7566(8), 14.3706(4), 30.3845(10)
α, β, γ / °	90, 90, 90	67.326(3), 77.613(3), 85.130(3)	90, 90, 90
U / ų	8828.5(2)	2589.8(3)	12556.4(6)
Dc / Mg m⁻³	1.462	1.285	1.255
Ζ	8	2	8
Radiation type	Ga-Kα	Си-Ка	Си-Ка
µ / mm⁻¹	3.715	1.642	1.345
Т/К	150	150	150
Refln. collected (Rint)	55800 (0.0882)	27941 (0.0277)	48359 (0.0895)
Unique refln.	17467	9439	18870
Refln. for refinement	13131	8700	15392
Parameters	1162	587	1507
Threshold	<i>l</i> > 2 $\sigma(l)$	$l > 2\sigma(l)$	l > 2σ(l)
R1 (R1 all data)	0.0670 (0.1002)	0.0583 (0.0613)	0.0592 (0.0764)
wR2 (wR2 all data)	0.1495 (0.1668)	0.1805 (0.1842)	0.1389 (0.1509)
Goodness of fit	1.022	1.047	1.009
Flack parameter	0.370(6)		0.10(3)
CCDC deposition number	2081393	2081391	2081387

This journal is © The Royal Society of Chemistry 20xx

Dalton Trans.

Compound	[Cu(xantphos)(Me ₂ bpy)][BAr ^F 4]	[Cu(POP)(Me ₂ bpy)][BAr ^F ₄]	[Cu(POP)(Mebpy)][BAr ^F 4]· C6H12
Formula	C ₈₃ H ₅₆ BCuF ₂₄ N ₂ OP ₂	$C_{80}H_{52}BCuF_{24}N_2OP_2$	C85 H62 B Cu F24 N2 O P2
Formula weight	1689.58	1649.52	1719.65
Crystal colour and habit	Yellow block	Yellow block	Yellow plate
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	ΡĪ	ΡĪ	P21/c
a, b, c / Å	10.7126(2), 18.8554(4), 19.4247(4)	13.4775(10), 13.7430(11), 20.8898(16)	14.2327(4), 30.8018(9), 18.4314(5)
α, β, γ / °	79.4640(10), 89.642(2), 74.7590(10)	89.276(3), 76.079(3), 85.590(3)	90, 94.048(2), 90
U / ų	3718.16(13)	3744.4(5)	8060.0(4)
Dc / Mg m ⁻³	1.509	1.463	1.417
Ζ	2	2	4
Radiation type	Ga-Kα	Cu-Kα	Cu-Κα
μ / mm ⁻¹	2.475	1.768	1.665
Т/К	150	150	150
Refln. collected (Rint)	52347 (0.0686)	34371 (0.0266)	58689 (0.0377)
Unique refln.	14623	13675	12748
Refln. for refinement	13290	12292	14521
Parameters	1037	1002	962
Threshold	l > 2 ₀ (l)	$l > 2\sigma(l)$	<i>l</i> > 2σ(<i>l</i>)
R1 (R1 all data)	0.0644 (0.0693)	0.0633 (0.0689)	0.0865 (0.0953)
wR2 (wR2 all data)	0.1716 (0.1760)	0.1633 (0.1692)	0.2089 (0.2156)
Goodness of fit	1.039	1.051	1.057
CCDC deposition number	2081388	2081389	2081390

Fig. S65 Structure of the [Cu(POP)(Mebpy)]⁺ cation in [Cu(POP)(Mebpy)][PF₆]-0.5CH₂Cl₂-0.5Et₂O. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Cu1-P2 = 2.2528(8), Cu1-P1 = 2.2736(8), Cu1-N2 = 2.051(2), Cu1-N1 = 2.118(2), C25-O1 = 1.397(4), C30-O1 = 1.380(4) Å; P2-Cu1-P1 = 112.93(3), P2-Cu1-N2 = 113.20(7), P1-Cu1-N2 = 113.20(7), P2-Cu1-N1 = 119.44(7), P1-Cu1-N1 = 108.74(7), N2-Cu1-N1 = 80.11(9),C25-O1-C30 = 119.0(2) °.

Fig. S66 Structure of the [Cu(POP)(Mebpy)]⁺ cation in [Cu(POP)(Mebpy)][BAr^F₄]·C₆H₁₂. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Molecule 1 Cu1-P2 = 2.254(1),Cu1-P1 = 2.272(1), Cu1-N2 = 2.163(6), Cu1-N1 = 2.028(6), C36-O1 = 1.385(5); COOR–O1 = 1.397(5) Å; P2-Cu1-P1 = 115.43(4), P2-Cu1-N2 = 115.2(2),P1-Cu1-N2 = 111.2(2), P2-Cu1-N1 = 115.9(2), P1-Cu1-N1 = 114.8(2),N2-Cu1-N1 = 79.1(2),C36-O1-C00R = 121.5(3) °. Molecule 2 Cu1-P2 = 2.254(1), Cu1-P1 = 2.272(1), Cu1-N4 = 1.983(6), Cu1-N3 = 2.049(6),C36-O2 = 1.385(5),COOR-O2 = 1.397(5) Å; P2-Cu1-P1 = 115.43(4), P2-Cu1-N4 = 109.7(2),P1-Cu1-N4 = 106.6(2), P2-Cu1-N3 = 120.1(2), P1-Cu1-N3 = 116.7(2),N4-Cu1-N3 = 81.4(3), C36–O2–C00R = 121.5(3) °.

Fig. S67 Structure of the [Cu(POP)(Me₂bpy)]⁺ cation in [Cu(POP)(Me₂bpy)][BAr^F₄]. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Cu1-P2 = 2.3185(7), Cu1-P1 = 2.2296(8), Cu1-N2 = 2.089(3), Cu1-N1 = 2.068(3), C26-O1 = 1.387(4), C32-O1 = 1.395(3) Å; P2-Cu1-P1 = 115.92(3), P2-Cu1-N2 = 103.13(7), P1-Cu1-N2 = 125.13(7), P2-Cu1-N1 = 100.75(7), P1-Cu1-N1 = 124.41(7), N2-Cu1-N1 = 80.5(1), C26-O1-C32 = 118.5(2) °.

Fig. S68 Structure of the $[Cu(xantphos)(Mebpy)]^+$ cation in $[Cu(xantphos)(Mebpy)][PF_6]\cdot CH_2Cl_2\cdot Et_2O$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Cu1-P2 = 2.2509(9), Cu1-P1 = 2.2677(8), Cu1-N2 = 2.040(3), Cu1-N1 = 2.074(4), C25-O1 = 1.388(4), C32-O1 = 1.397(4) Å; P2-Cu1-P1 = 113.44(3), P2-Cu1-N2 = 114.95(9), P1-Cu1-N2 = 111.21(9), P2-Cu1-N1 = 121.03(9), P1-Cu1-N1 = 111.30(9), N2-Cu1-N1 = 80.8(1), C25-O1-C32 = 114.2(2) °.

Fig. S69 Structure of the [Cu(xantphos)(Mebpy)]⁺ cation in [Cu(xantphos)(Mebpy)][BF₄]. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Cu1-P2 = 2.2559(9), Cu1-P1 = 2.2654(8), Cu1-N2 = 2.045(2), Cu1-N1 = 2.072(4), C29-O1 = 1.389(3), C32-O1 = 1.399(4) Å; P2-Cu1-P1 = 113.34(3), P2-Cu1-N2 = 114.83(9), P1-Cu1-N2 = 111.77(9), P2-Cu1-N1 = 119.20(9), P1-Cu1-N1 = 112.66(9), N2-Cu1-N1 = 81.1(1),C29-O1-C32 = 113.9(2) °.

Fig. S70 Structure of the [Cu(xantphos)(Me₂bpy)]⁺ cations in [Cu(xantphos)(Me₂bpy)][PF₆]. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Molecule 1 Cu1-P2 = 2.323(2), Cu1-P1 = 2.280(2), Cu1-N2 = 2.087(6), Cu1-N1 = 2.142(7),C26-O1 = 1.369(8);C37–O1 = 1.392(9) Å; P2-Cu1-P1 = 121.53(8), P2-Cu1-N2 = 101.7(2),P1-Cu1-N2 = 120.5(2), P2-Cu1-N1 = 97.5(2), P1-Cu1-N1 = 126.9(2),N2-Cu1-N1 = 79.1(2),C26-O1-C37 = 118.7(6) °. Molecule 2 Cu2-P4 = 2.320(2),Cu2-P3 = 2.266(2), Cu2-N4 = 2.127(7), Cu2-N3 = 2.096(6), C77-O2 = 1.401(8),C84–O2 = 1.40(1) Å; P4-Cu2-P3 = 117.77(8), P4-Cu2-N4 = 99.9(2), P3-Cu2-N4 = 129.3(2), P4-Cu2-N3 = 102.9(2), P3-Cu2-N3 = 119.8(2),N4-Cu2-N3 = 79.0(2),C77-O2-C84 = 115.0(6) °.

Fig. S71 Structure of the [Cu(xantphos)(Me₂bpy)]⁺ cation in [Cu(xantphos)(Me₂bpy)][BF₄]·C₆H₁₂. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Cu1-P2 = 2.2988(7), Cu1-P1 = 2.2695(9), Cu1-N2 = 2.110(3), Cu2-N1 = 2.091(2), C26-O1 = 1.397(3), C33-O1 = 1.387(4) Å; P2-Cu1-P1 = 111.54(3), P2-Cu1-N2 = 120.03(7), P1-Cu1-N2 = 120.03(7), P1-Cu1-N1 = 109.75(7), P1-Cu1-N1 = 121.94(7), N2-Cu1-N1 = 79.60(9), C26-O1-C33 = 114.8(2) °.

Fig. S72 Structure of the $[Cu(xantphos)(Me_2bpy)]^+$ cations in $[Cu(xantphos)(Me_2bpy)][BPh_4] \cdot 0.7C_3H_6O$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

Molecule 1 Cu1-P2 = 2.255(2), Cu1-P1 = 2.310(2),Cu1-N2 = 2.129(5), Cu1-N1 = 2.093(5), C36-O1 = 1.377(7);C39–O1 = 1.376(7) Å; P2-Cu1-P1 = 117.99(7), P2-Cu1-N2 = 123.1(2),P1-Cu1-N2 = 100.7(2),P2-Cu1-N1 = 124.1(1), P1-Cu1-N1 = 103.8(1), N2-Cu1-N1 = 79.3(2),C36-O1-C39 = 118.5(5) °. Molecule 2 Cu2-P4 = 2.306(2), Cu2-P3 = 2.287(2), Cu2-N4 = 2.122(5), Cu2-N3 = 2.102(5), C77-O2 = 1.397(7),C84–O2 = 1.387(7) Å; P4-Cu2-P3 = 113.48(7), P4-Cu2-N4 = 113.3(1),P3-Cu2-N4 = 118.1(1),P4-Cu2-N3 = 108.5(2),P3-Cu2-N3 = 120.1(2), N4-Cu2-N3 = 78.9(2),C77-O2-C84 = 115.9(4) °.

Fig. S73 Structure of the $[Cu(xantphos)(Me_2bpy)]^+$ cation in $[Cu(xantphos)(Me_2bpy)][BArF_4] \cdot C_6H_{12}$. H atoms and solvent molecules are omitted and ellipsoids are plotted at 50% probability level. Selected bond parameters:

 $\begin{array}{l} \text{Cu1-P2} = 2.2914(7),\\ \text{Cu1-P1} = 2.2871(8),\\ \text{Cu1-N2} = 2.116(2),\\ \text{Cu1-N1} = 2.122(2),\\ \text{C26-O1} = 1.387(3),\\ \text{C30-O1} = 1.386(3) \text{ Å};\\ \text{P2-Cu1-P1} = 113.12(3),\\ \text{P2-Cu1-P1} = 109.78(7),\\ \text{P1-Cu1-N2} = 109.78(7),\\ \text{P1-Cu1-N2} = 119.10(7),\\ \text{P2-Cu1-N1} = 112.14(7),\\ \text{P1-Cu1-N1} = 119.31(7),\\ \text{N2-Cu1-N1} = 79.02(9),\\ \text{C26-O1-C30} = 116.6(2) ^{\circ}. \end{array}$

Fig. S74 One of the independent cations in $[Cu(xantphos)(Me_2bpy)][BPh_4]$ features C–H... π contacts between one phenyl ring of each PPh₂ group and the bpy domain; the centroid of the chelate ring is shown in red.

Fig. S75 Three consecutive scans in the cyclic voltammograms of [Cu(POP)(Mebpy)][A] in CH_2Cl_2 solution (ca. 10^{-4} mol dm⁻³) with $[^{n}Bu_4N][PF_6]$ as supporting electrolyte and a scan rate of 0.1 V s⁻¹ (referenced to internal Fc/Fc⁺ = 0.0 V).

Fig. S76 Three consecutive scans in the cyclic voltammograms of $[Cu(POP)(Me_2bpy)][A]$ in CH_2Cl_2 solution (ca. 10⁻⁴ mol dm⁻³) with $[^nBu_4N][PF_6]$ as supporting electrolyte and a scan rate of 0.1 V s⁻¹ (referenced to internal Fc/Fc⁺ = 0.0 V).

Fig. S77 Three consecutive scans in the cyclic voltammograms of [Cu(xantphos)(Mebpy)][A] in CH_2Cl_2 solution (ca. 10⁻⁴ mol dm⁻³) with $[^nBu_4N][PF_6]$ as supporting electrolyte and a scan rate of 0.1 V s⁻¹ (referenced to internal Fc/Fc⁺ = 0.0 V).

Dalton Trans.

Fig. S78 Three consecutive scans in the cyclic voltammograms of $[Cu(xantphos)(Me_2bpy)][A]$ in CH_2Cl_2 solution (ca. 10⁻⁴ mol dm⁻³) with $[^nBu_4N][PF_6]$ as supporting electrolyte and a scan rate of 0.1 V s⁻¹ (referenced to internal Fc/Fc⁺ = 0.0 V).

Fig. S79. Powder samples of [Cu(xantphos)(N^N)][A] complexes under ambient light (left) and under UV light (λ_{exc} = 366 nm, right).

Fig. S80. Current efficiency of the best working LECs.

References

1. C. S. Smith, C. W. Branham, B. J. Marquardt and K. R. Mann, J. Am. Chem. Soc., 2010, 132, 14079-14085.