Supplementary Material

Biological luminescent metal-organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides

Ying-Ying Zhou^a, Yuan Xu^a, Maoxing Yu^b, Yi Xiong^b, Xun-Gao Liu^{a,*}, Zujin Zhao^{b,*}

^a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China

^b State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China

*Corresponding author: xungaoliu@hznu.edu.cn (X.-G. Liu); mszjzhao@scut.edu.cn

(Z. Zhao).

Compound	Complex 1	
Formula	C ₂₆₄ H ₁₉₂ N ₄₄ O ₃₄ Zn ₁₂	
M	5309.29	
crystal system	orthorhombic	
space group	Ccca	
$a/\mathrm{\AA}$	9.9878(11)	
b/Å	42.445(5)	
$c/{ m \AA}$	42.607(4)	
a/deg	90	
β /deg	90	
γ/deg	90	
<i>V</i> /Å ³	18063(3)	
Ζ	2	
temperature/K	150	
λ (radiation wavelength)/Å	0.71073	
$D(g/cm^3)$	0.976	
reflections collected	71109	
$R_1^{a}[I \ge 2\sigma(I)]$	0.0287	
$wR_2^{b}[I \ge 2\sigma(I)]$	0.0640	
goodness-of-fit	1.055	
CCDC no.	2071053	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} $. ${}^{b}wR_{2} = [\sum [w(Fo^{2} - Fc^{2})^{2}] / w(Fo^{2})^{2}]^{1/2}$		

Table S1. Crystal data and structure refinements for complex 1

Table S2. Selected bond lengths (Å) and angles (°) for complex 1.

Zn(1)-O(1A)	1.9115(2)	Zn(2)-O(3)	2.7010(2)
Zn(1)-O(1B)	1.9115(2)	Zn(2)-O(4)	1.9531(1)
Zn(1)-N(2C)	2.0176(1)	Zn(2)-O(5)	1.9819(1)
Zn(1)-N(2D)	2.0176(1)	Zn(2)-N(1)	1.9699(1)
		Zn(2)-N(4)	2.0577(1)
O(1A)-Zn(1)-O(1B)	126.538(11	O(3)-Zn(2)-O(4)	53.377(6)
)		
O(1A)-Zn(1)-N(2C)	102.719(7)	O(3)-Zn(2)-O(5)	162.700(7)
O(1A)-Zn(1)-N(2D)	112.277(8)	O(3)-Zn(2)-N(1)	86.116(8)
O(1B)-Zn(1)-N(2C)	112.277(8)	O(3)-Zn(2)-N(4)	86.381(6)
O(1B)-Zn(1)-N(2D)	102.719(7)	O(4)-Zn(2)-O(5)	109.372(9)
N(2C)-Zn(1)-N(2D)	96.462(6)	O(4)-Zn(2)-N(1)	113.730(8)
		O(4)-Zn(2)-N(4)	119.328(6)
		O(5)-Zn(2)-N(1)	101.991(6)
		O(5)-Zn(2)-N(4)	105.873(6)
		N(1)-Zn(2)-N(4)	104.916(7)

Fig. S1. (A) The plane of the two C atoms forming central C=C double bond and four C atoms surround them is named P1. The planes crossing phenyl rings attached C=C double bond are named P2. The planes of phenyl rings connected with carboxylic groups are named P3. The average dihedral angles are labeled for (B) P1-P2 and (C) P2-P3 in complex 1.

Fig. S2. The PXRD patterns of simulated 1 (magenta), complex 1 (blue), activated 1 (red) and activated 1 in water (black).

Fig. S3. Thermogravimetric (TG) analyses of complex 1 and activated 1.

Fig. S4. The FESEM images of the complex 1.

Fig. S5. FTIR spectra of Ade (black), H₄TCPPE (red), complex 1 (blue) and activated 1 (green).

Fig. S6. Solid-state PL spectra of complex 1 and activated 1.

Fig. S7. Spectral overlap between the excitation and emission spectra of activated 1 aqueous suspension.

Fig. S8. The fitting plot of the I_0/I of activated 1 with the increasing concentration of L-Nph at low concentration range.

Fig. S9. (A) Emission spectra of activated 1 suspension upon addition of L-Nph aqueous solution (0.283 mM). (B) The fitting plot of the I_0/I of activated 1 suspension with the increasing concentration of L-Nph at low concentration range.

Fig. S10. Emission spectra of activated 1 aqueous suspension upon addition of different amino acids of L-Asp (A), L-Glu (B), L-Cys (C), L-Lys (D), L-Thr (E), L-Phe(F) and L-Arg (G) aqueous solution (2 mM). (H) Emission spectra of activated 1 aqueous suspension upon addition of 460 μ L water. (I) Emission spectra of activated 1 aqueous suspension upon addition of a mixed aqueous solution of all amino acids.

Fig. S11. The fitting plot of the I_0/I of activated 1 with the increasing concentration of D-Nga at low concentration range.

Fig. S12. (A) Emission spectra of activated 1 suspension upon addition of D-Nga aqueous solution (2.141 mM). (B) The fitting plot of the I_0/I of activated 1 suspension with the increasing concentration of D-Nga at low concentration range.

Fig. S13. Emission spectra of activated 1 aqueous suspension upon addition of different monosaccharide of D-Gal (A), D-Glu (B), D-Man (C), D-Fru (D), D-Ara (E), D-Xyl (F) and D-Rib (G) aqueous solution (10 mM). (H) Emission spectra of activated 1 aqueous suspension upon addition of 440 μ L water. (I) Emission spectra of activated 1 aqueous suspension upon addition of a mixed aqueous solution of all monosaccharide.

Fig. S14. Stern-Volmer (SV) plots for amino acids (A) and monosaccharides (B) aqueous solution.

Fig. S15. PXRD patterns of activated 1 (blue) and activated 1 after being soaked in L-Nph (black) and D-Nga (red), respectively.

Fig. S16. Spectral overlap between the UV-vis spectra of amino acids (A) and monosaccharides (B) aqueous solution and the emission spectrum of activated **1** aqueous suspension.

Fig. S17. Spectral overlap between the UV-vis spectra of amino acids (A) and monosaccharides (B) aqueous solution and the UV-vis spectra of activated **1** aqueous suspension.