Supporting Information

Ionic Indium (III) Chloride Hybrids Incorporating 2,2'-bipyrimidine

Ligand: Studies on Photoluminescence and Structural

Transformation

Jian-Ce Jin,^{*a,c*} Ting-Hui Zhuang,^{*a,b*} Yang-Peng Lin,^{*b*} Bing-Ye Lin,^{*d*} Jiang Jiang,^{*d*} Ke-Zhao Du,^{*b*} and Xiao-Ying Huang^{*a,c*,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.

^b College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.

^c University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.

^d Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China.

E-mail: xyhuang@fjirsm.ac.cn

Compound	1	2	3
Empirical formula	In2Cl8C25H33N7O	$In_2Cl_8C_{22}H_{26}N_6$	$In_2Cl_8C_{26}H_{34}N_6$
Formula Mass	960.82	887.73	943.83
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	C2/c	<i>P</i> -1	<i>P</i> -1
a/Å	17.0310(8)	8.7030(4)	8.5386(6)
b/Å	15.1706(7)	9.1050(5)	10.7576(8)
c/Å	14.2343(7)	10.8430(5)	11.5924(14)
$\alpha/^{\circ}$	90	89.960(4)	64.232(9)
$eta / ^{\circ}$	93.138(4)	75.832(4)	73.673(8)
$\gamma/^{\circ}$	90	81.441(4)	83.411(6)
$V/Å^3$	3672.2(3)	823.22(7)	920.23(16)
Ζ	4	1	1
T/K	294(2)	290(2)	290(2)
λ/Å	0.71073	0.71073	0.71073
<i>F</i> (000)	1896	434	466
$ ho_{ m calcd}/ m g~ m cm^{-3}$	1.738	1.791	1.703
μ/mm^{-1}	1.869	2.074	1.861
Measured refls.	20828	16207	21945
Independent refls.	4744	3762	5010
No. of parameters	210	173	191
R _{int}	0.0402	0.0539	0.0721
$R_1 (I \ge 2\sigma(I))^a$	0.0301	0.0356	0.0484
$wR(F^2) (I \ge 2\sigma(I))^b$	0.0686	0.0542	0.1093
GOF	1.053	1.008	1.057

 Table S1 Crystallographic data and refinement details for 1, 2 and 3.

[a] $R_1 = \sum \|F_o\| - \|F_c\| / \sum \|F_o\|$, [b] $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Fable S2 Selected bond lengths	(Å) and bond angles ((°) for 1 , 2 and 3 .
---------------------------------------	-----------------------	--

1		2		3	
In(1)-N(1)	2.370(2)	In(1)-N(1)	2.374(3)	In(1)–N(1)	2.365(3)
In(1)-N(2)#1	2.3696(19)	In(1)-N(2)#1	2.377(3)	In(1)-N(2)#1	2.378(4)
In(1)-Cl(1)	2.4220(7)	In(1)-Cl(1)	2.4541(9)	In(1)-Cl(1)	2.4313(11)
In(1)-Cl(2)	2.4543(8)	In(1)-Cl(2)	2.4329(10)	In(1)-Cl(2)	2.4436(13)
In(1)-Cl(3)	2.4763(8)	In(1)-Cl(3)	2.4336(10)	In(1)-Cl(3)	2.4537(12)
In(1)-Cl(4)	2.4188(7)	In(1)-Cl(4)	2.4751(10)	In(1)-Cl(4)	2.4626(14)
N(1)-In(1)-N(2)#1	69.64(7)	N(1)-In(1)-N(2)#1	69.43(9)	N(1)-In(1)-N(2)#1	69.77(11)
N(1)-In(1)-Cl(1)	162.35(5)	N(1)-In(1)-Cl(1)	85.33(7)	N(1)-In(1)-Cl(1)	162.00(9)
N(1)-In(1)-Cl(2)	83.38(6)	N(1)-In(1)-Cl(2)	164.71(7)	N(1)-In(1)-Cl(2)	84.17(10)

N(1)-In(1)-Cl(3)	84.28(6)	N(1)-In(1)-Cl(3)	89.99(7)	N(1)-In(1)-Cl(3)	93.33(9)
N(1)-In(1)-Cl(4)	93.35(5)	N(1)-In(1)-Cl(4)	83.79(7)	N(1)-In(1)-Cl(4)	84.63(10)
N(2)#1-In(1)-Cl(1)	92.73(5)	N(2)#1-In(1)-Cl(1)	87.47(7)	N(2)#1-In(1)-Cl(1)	92.24(9)
N(2)#1-In(1)-Cl(2)	84.89(6)	N(2)#1-In(1)-Cl(2)	95.34(7)	N(2)#1-In(1)-Cl(2)	86.96(10)
N(2)#1-In(1)-Cl(3)	82.31(6)	N(2)#1-In(1)-Cl(3)	158.83(7)	N(2)#1-In(1)-Cl(3)	162.72(9)
N(2)#1-In(1)-Cl(4)	162.87(5)	N(2)#1-In(1)-Cl(4)	79.17(7)	N(2)#1-In(1)-Cl(4)	82.93(10)
Cl(1)-In(1)-Cl(2)	94.84(3)	Cl(1)-In(1)-Cl(4)	165.08(4)	Cl(1)-In(1)-Cl(2)	95.00(4)
Cl(1)-In(1)- $Cl(3)$	94.16(3)	Cl(2)-In(1)-Cl(1)	92.91(4)	Cl(1)- $In(1)$ - $Cl(3)$	104.64(4)
Cl(2)-In(1)- $Cl(3)$	164.67(3)	Cl(2)-In(1)-Cl(3)	105.30(4)	Cl(1)-In(1)-Cl(4)	93.60(5)
Cl(4)-In(1)- $Cl(1)$	104.30(3)	Cl(2)-In(1)-Cl(4)	94.90(4)	Cl(2)-In(1)-Cl(3)	95.08(5)
Cl(4)-In(1)-Cl(2)	95.38(3)	Cl(3)-In(1)- $Cl(1)$	95.99(4)	Cl(2)-In(1)-Cl(4)	166.97(5)
Cl(4)-In(1)- $Cl(3)$	94.39(3)	Cl(3)-In(1)-Cl(4)	94.19(4)	Cl(3)-In(1)-Cl(4)	92.19(5)
C(1) - N(1) - In(1)	125.17(16)	C(1)-N(1)-In(1)	125.4(2)	C(1)-N(1)-In(1)	125.7(3)
C(4) - N(1) - In(1)	117.79(16)	C(4) - N(1) - In(1)	117.3(2)	C(4)-N(1)-In(1)	117.9(3)
C(3)-N(2)-In(1)#1	124.78(16)	C(3)-N(2)-In(1)#1	125.3(2)	C(3)-N(2)-In(1)#1	125.2(3)
C(4)-N(2)-In(1)#1	117.84(15)	C(4)-N(2)-In(1)#1	116.7(2)	C(4)-N(2)-In(1)#1	117.4(3)
Symmetry transformati	ons used to get	nerate equivalent atoms:			
#1 -x+1/2, -y+1/2, -z+1		#1 - <i>x</i> +1, - <i>y</i> , - <i>z</i> +1		#1 - <i>x</i> , - <i>y</i> +2, - <i>z</i> +1	

D–H…A	D-H (Å)	H…A (Å)	$D \cdots A(Å)$	<(DHA)
1				
H-bonds in anions				
C(1)-H(1)···Cl(1)#2	0.93	2.86	3.499(3)	126.5
$C(1)-H(1)\cdots Cl(4)$	0.93	2.92	3.539(3)	124.9
C(3)-H(3)···Cl(1)#1	0.93	2.88	3.506(3)	125.5
C(3)-H(3)····Cl(4)#3	0.93	2.90	3.512(3)	124.8
H-bonds between anions and ca	ations			
C(5)-H(5)····Cl(2)#4	0.93	2.69	3.609(4)	172.2
C(6)-H(6)···Cl(3)#5	0.93	2.83	3.589(4)	139.8
C(8)-H(8)····Cl(2)#6	0.93	2.94	3.612(4)	130.1
C(9)-H(9)···Cl(3)#7	0.93	2.65	3.539(4)	159.2
C(10)-H(10A)Cl(4)#4	0.97	2.92	3.814(7)	154.1
C(10)-H(10B)Cl(1)#7	0.97	2.85	3.698(6)	146.1
$C(11)-H(11C)\cdots Cl(3)$	0.96	2.89	3.814(5)	161.4
H-bonds between anions and so	olvent molecule	•		
C(13^a)-H(13B^a)Cl(1)#7	0.96	3.07	3.61(3)	117.2
Symmetry transformations used	to generate equi	valent atoms:		
#1 - <i>x</i> +1/2, - <i>y</i> +1/2, - <i>z</i> +1; #2 - <i>x</i> +1/	2, y-1/2, -z+1/2;	; #3 x, -y, z+1/2;	#4 <i>x</i> +1/2, - <i>y</i> +1	/2 , <i>z</i> +1/2; #
<i>x</i> +1, - <i>y</i> , - <i>z</i> +1; #6 <i>x</i> +1/2, <i>y</i> -1/2, <i>z</i> ;	#7 - <i>x</i> +1, <i>y</i> , - <i>z</i> +1	/2.		
2				
H-bonds in anions				
$C(1) - H(1) \cdots Cl(1) #2$	0.93	2.83	3.589(3)	139.8
$C(1)-H(1)\cdots Cl(3)$	0.93	2.85	3.432(4)	121.4

C(3)-H(3)···Cl(1)#3	0.93	2.93	3.559(4)	126.3			
H-bonds between anions and cations							
C(5)-H(5)····Cl(3)#2	0.93	2.83	3.749(5)	169.2			
C(6)-H(6)···Cl(2)#4	0.93	2.92	3.773(5)	152.8			
C(9)-H(9)····Cl(2)#5	0.93	2.96	3.461(4)	115.3			
C(9)-H(9)···Cl(4)#6	0.93	2.87	3.522(5)	127.8			
C(11)-H(11B)Cl(4)#6	0.96	2.96	3.699(5)	135.1			
C(11)-H(11C)····Cl(4)#1	0.96	2.91	3.627(4)	132.6			
Symmetry transformations used to	generate equiva	alent atoms:					
<i>#</i> 1 - <i>x</i> +1, - <i>y</i> , - <i>z</i> +1; <i>#</i> 2 - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> -	+1; #3 <i>x</i> -1, <i>y</i> , <i>z</i> ;	#4 - <i>x</i> +2, - <i>y</i> +1,	- <i>z</i> +1; #5 - <i>x</i> +2, - <i>y</i>	<i>v</i> , <i>-z</i> +1; #6 <i>x</i> ,			
<i>y</i> , <i>z</i> +1.							
3							
H-bonds in anions							
$C(1)-H(1)\cdots Cl(3)$	0.93	2.94	3.562(5)	125.1			
$C(3)-H(3)\cdots Cl(1)#1$	0.93	2.88	3.506(5)	125.4			
C(3)-H(3)····Cl(2)#2	0.93	2.91	3.554(4)	127.3			
H-bonds between anions and cations							
C(6)-H(6)···Cl(3)#3	0.93	2.87	3.615(7)	137.5			
C(8)-H(8)····Cl(4)#4	0.93	2.82	3.719(6)	162.2			
C(9)-H(9)···Cl(1)#4	0.93	2.81	3.507(6)	132.4			
C(10)-H(10A)Cl(4)#5	0.97	2.74	3.602(7)	148.4			
$C(10)-H(10B)\cdots Cl(3)$	0.97	2.94	3.766(7)	144.2			
Symmetry transformations used to generate equivalent atoms:							
<i>#</i> 1 - <i>x</i> , - <i>y</i> +2, - <i>z</i> +1; <i>#</i> 2 <i>x</i> -1, <i>y</i> , <i>z</i> ; <i>#</i> 3 - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; <i>#</i> 4 - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +2; <i>#</i> 5 - <i>x</i> , - <i>y</i> +1, - <i>z</i> +2.							

Figure S1 *ORTEP* drawings (50% ellipsoid probability) of the asymmetric units of 1 (a), 2 (b) and 3 (c).

Figure S2 Views of the structure of $[(CuI)_2(bpym)]^1$ along the *a* axis (a) and *b* axis (b). (c) View of the structure of $[Hg_2I_4(bpym)]^2$ along the *c* axis. (d) View of the anionic chain in $[ILC][Bi_2Cl_8(bpym)]^3$ (ILC = BPy, *N*-butylpyridinium or EPy, *N*-ethylpyridinium).

Figure S3 View of structural packing modes for 1 (a) along the *c* axis, 2 (b) along the *b* axis and 3 (c) along the *b* axis. H atoms are omitted for clarity.

Cg(I)····Cg(J)	ARU(J)	Cg…Cg(Å)	α(°)	β(°)	γ(°)	
$Cg(3) \rightarrow Cg(4)$	3656	4.184(2)	21.60	20.13	40.93	
$Cg(4) \rightarrow Cg(3)$	3656	4.184(2)	21.60	40.93	20.13	
$Cg(4) \rightarrow Cg(4)$	3656	3.810(2)	0.02	24.69	24.69	
$Cg(3): N(1) \rightarrow C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow N(2) \rightarrow C(4); Cg(4): N(3) \rightarrow C(5) \rightarrow C(6) \rightarrow C(7) \rightarrow C(8) \rightarrow C(9).$						

Table S4 The π - π interaction data for 1 at 294 K.

Figure S4 π - π interactions shown in rose dotted lines for 1. The ring-to-ring distances are

3.810(2) and 4.184(2) Å.

Figure S5 The Hirshfeld d_{norm} surfaces of organic part with C…C interaction for 1 (a) and viewed from behind (b). The C…C interaction for 1 is circled in red. (c) 2D fingerprint plot of C…C interaction for 1. The fingerprint covers from di = de = 1.8 to 2.0 Å.

Figure S6 Experimental and simulated PXRD patterns of 2.

Figure S7 Experimental and simulated PXRD patterns of 3.

Figure S8 TG curves for 1, 2 and 3.

Figure S9 Photographs of crystals under daylight (left) and UV irradiation (right) for 1 (a), 2 (b) and 3 (c). Photographs of powdered samples obtained by grinding crystals 1 (d), 2 (e) and 3 (f).

Figure S10 The electronic band structure of 2. The calculated bandgap of 2 is 2.348 eV.

Figure S11 The electronic band structure of 3. The calculated bandgap of 3 is 2.362 eV.

Figure S12 Density of states (DOSs) of 2.

Figure S14 The highest occupied molecular orbital (HOMO, left) and the lowest unoccupied molecular orbital (LUMO, right) for **3**. The isosurface values are 0.03.

Figure S15 The PLE and PL spectra at 77 K for 1 (a), 2 (b) and 3 (c). The PL spectrum of 1-h at 77 K. Note that the PL spectra for 2 and 1-h at 77 K are comparable except the difference in PL intensity.

Figure S16 The PL decay spectra of 2 at 298 K (a) and at 77 K (b) and of 3 at 298 K(c) and at 77 K (d).

References

- F. Hou, M. Powel, D. B. Dougherty, R. D. Sommer and P. A. Maggard, *Cryst. Growth Des.*, 2018, 18, 5406-5416.
- 2. E. Priola, E. Bonometti, V. Brunella, L. Operti and E. Diana, *Polyhedron*, 2016, **104**, 25-36.
- 3. J.-C. Jin, N.-N. Shen, Y.-P. Lin, L.-K. Gong, H.-Y. Tong, K.-Z. Du and X.-Y. Huang, *Inorg. Chem.*, 2020, **59**, 13465-13472.