Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

RbMo₂P₃O₁₄ with Large Birefringence Mainly Induced by Highly Distorted [MoO₆] in the Uncommon [Mo₂P₃O₁₄]_∞ Layers

Rui Zhang^a, Xin Su^{*a}, Jie Zhang^b, Mingyao Xiong,^a Yineng Huang^a

^a Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics,

College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000,

China.

^b Department of Physics, Changji University. Changji, Xinjiang 831100, China.

*Corresponding author E-mail: suxin_phy@sina.com

Empirical formula	RbMo ₂ P ₃ O ₁₄		
Formula weight	594.26		
Crystal system, space group	Monoclinic, <i>P</i> 2 ₁		
<i>a</i> (Å)	8.0271(3)		
<i>b</i> (Å)	6.3124(2), <i>β</i> =96.121 (10)		
<i>c</i> (Å)	11.9022(4)		
Volume (Å ³)	599.65(4)		
Z, Calculated density	2, 3.291 g/cm ³		
F(000)	556.0		
Theta range for data collection	3.442 to 55.102		
Index ranges	$-10 \leq h \leq 10, -8 \leq k \leq 8, -15 \leq I \leq 15$		
Reflections collected / unique	12256		
Independent reflections	2781 [$R_{int} = 0.0363, R_{sigma} = 0.029$]		
Data / restraints / parameters	2781/1/182		
Goodness-of-fit on F_o^2	1.059		
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^a$	R_1 =0.0195, wR_2 =0.0464		
Final <i>R</i> indices (all data) ^{<i>a</i>}	R_1 =0.0207, wR_2 =0.0471		
Largest diff. peak and hole (e Å-3)	0.63/-0.61		
Flack parameter	0.422(10)		
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} $ and $wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$.			

Table S1 Crystal data and structure refinement for $RbMo_2P_3O_{14}$.

10111021 3014. 08	a is actified us off	e unite of the flue	e the orthogonans	ea eij tensor.	
Atom	х	у	Z	U _{eq}	BVS
Rb(1)	3166.7(9)	8213.9(13)	2379.4(5)	38.66(17)	1.05
Mo(1)	7195.7(5)	7360.8(5)	5205.0(3)	12.29(10)	6.20
Mo(2)	7275.8(5)	9696.2(6)	331.2(3)	14.99(10)	6.24
P(1)	8487.8(14)	2270(2)	4945.0(9)	11.7(2)	5.13
P(2)	9431.5(16)	1966(2)	2658.5(10)	13.7(3)	5.11
P(3)	8675.5(16)	4600(2)	735.8(9)	14.6(2)	5.19
O(1)	6269(5)	7571(8)	3878(3)	27.3(9)	2.02
O(2)	5689(6)	9866(10)	1145(4)	40.0(11)	2.04
O(3)	5585(5)	7219(8)	5989(3)	22.6(8)	1.93
O(4)	7531(5)	4228(6)	5210(3)	21.7(10)	2.25
O(5)	7635(5)	446(6)	5482(3)	18.1(8)	2.17
O(6)	10312(4)	2412(7)	5330(3)	17.1(7)	1.91
O(7)	8212(4)	1887(7)	3612(3)	21.7(8)	2.16
O(8)	11188(5)	2073(7)	3160(3)	21.2(8)	1.99
O(9)	9046(6)	199(6)	1851(3)	23.7(10)	2.15
O(10)	8874(5)	4138(6)	2061(3)	20.5(8)	2.17
O(11)	10384(6)	4661(9)	376(4)	38.7(11)	2.03
O(12)	7587(6)	2866(7)	171(3)	26.8(11)	1.92
O(13)	7729(6)	6659(6)	627(3)	23.1(9)	1.98
O(14)	6257(6)	9491(8)	-967(4)	38.7(12)	2.18

Table S2 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å×10³) for RbMo₂P₃O₁₄. U_{eq} is defined as one-third of the trace the orthogonalised U_{ii} tensor.

Tuble be beleeted bolld an	stances (11) and ang		× 14•
Rb(1)-O(1)	2.933(4)	Mo(2)-O(13)	1.976(4)
Rb(1)-O(2)	2.825(5)	Mo(2)-O(2)	1.684(4)
Rb(1)-O(9)#7	3.530(4)	Mo(2)-O(11)#5	2.139(4)
Rb(1)-O(12)#4	3.040(4)	Mo(2)-O(14)	1.675(4)
Rb(1)-O(4)#6	3.049(4)	P(1)-O(6)	1.489(3)
Rb(1)-O(5)#6	3.209(4)	P(1)-O(4)	1.506(4)
Rb(1)-O(3)#6	3.279(4)	P(1)-O(5)	1.515(4)
Rb(1)-O(8)#7	3.104(4)	P(1)-O(7)	1.597(4)
Rb(1)-O(14)#8	2.954(5)	P(2)-O(9)	1.484(4)
Mo(1)-O(6)#2	2.164(4)	P(2)-O(7)	1.576(4)
Mo(1)-O(4)	1.996(4)	P(2)-O(8)	1.473(4)
Mo(1)-O(5)#3	2.001(4)	P(2)-O(10)	1.587(4)
Mo(1)-O(3)	1.676(4)	P(3)-O(12)	1.512(4)
Mo(1)-O(1)	1.678(4)	P(3)-O(13)	1.504(4)
Mo(1)-O(8)#2	2.228(3)	P(3)-O(11)	1.480(5)
Mo(2)-O(9)#3	2.201(4)	P(3)-O(10)	1.595(4)
Mo(2)-O(12)#3	2.028(4)		
O(6)#1-Mo(1)-O(8)#1	77.75(13)	O(1)-Rb(1)-O(9)#8	151.19(11)
O(4)-Mo(1)-O(6)#1	83.53(17)	O(1)-Rb(1)-O(12)#4	131.54(12)
O(4)-Mo(1)-O(5)#3	160.56(15)	O(1)-Rb(1)-O(4)#6	71.69(11)
O(4)-Mo(1)-O(8)#1	81.43(17)	O(1)-Rb(1)-O(5)#6	70.81(12)
O(5)#3-Mo(1)-O(6)#1	83.20(17)	O(1)-Rb(1)-O(3)#6	63.92(12)
O(5)#3-Mo(1)-O(8)#1	81.92(17)	O(1)-Rb(1)-O(8)#8	110.78(11)
O(3)-Mo(1)-O(6)#1	163.23(15)	O(1)-Rb(1)-O(14)#7	93.53(13)
O(3)-Mo(1)-O(4)	93.3(2)	O(2)-Rb(1)-O(9)#8	119.07(13)
O(3)-Mo(1)-O(5)#3	95.4(2)	O(2)-Rb(1)-O(12)#4	65.44(14)
O(3)-Mo(1)-O(1)	103.73(19)	O(2)-Rb(1)-O(4)#6	128.73(14)
O(3)-Mo(1)-O(8)#1	85.50(16)	O(2)-Rb(1)-O(5)#6	146.02(13)
O(1)-Mo(1)-O(6)#1	93.01(17)	O(2)-Rb(1)-O(3)#6	80.37(14)
O(1)-Mo(1)-O(4)	97.3(2)	O(2)-Rb(1)-O(1)	76.02(13)
O(1)-Mo(1)-O(5)#3	97.5(2)	O(2)-Rb(1)-O(8)#8	106.50(14)
O(1)-Mo(1)-O(8)#1	170.75(17)	O(2)-Rb(1)-O(14)#7	80.40(16)
O(12)#3-Mo(2)-O(9)#3	81.93(15)	O(8)#8-Rb(1)-O(9)#8	43.56(9)
O(12)#3-Mo(2)-O(11)#5	81.4(2)	O(8)#8-Rb(1)-O(5)#6	92.14(10)
O(13)-Mo(2)-O(9)#3	84.43(16)	O(8)#8-Rb(1)-O(3)#6	49.57(10)
O(13)-Mo(2)-O(12)#3	162.15(17)	O(14)#7-Rb(1)-O(9)#8	112.43(11)
O(13)-Mo(2)-O(11)#5	84.7(2)	O(14)#7-Rb(1)-O(12)#4	53.19(12)
O(2)-Mo(2)-O(9)#3	88.9(2)	O(14)#7-Rb(1)-O(4)#6	139.28(12)
O(2)-Mo(2)-O(12)#3	95.7(3)	O(14)#7-Rb(1)-O(5)#6	94.31(12)
O(2)-Mo(2)-O(13)	95.5(2)	O(14)#7-Rb(1)-O(3)#6	153.34(12)
O(2)-Mo(2)-O(11)#5	167.7(2)	O(14)#7-Rb(1)-O(8)#8	155.62(11)
O(11)#5-Mo(2)-O(9)#3	78.92(18)	O(6)-P(1)-O(4)	113.1(2)

Table S3 Selected bond distances (Å) and angles (deg.) for $RbMo_2P_3O_{14}$.

O((14)-Mo(2)-O(9)#3	168.1(2)	O(6)-P(1)-O(5)	112.9(2)
0((14)-Mo(2)-O(12)#3	92.45(19)	O(6)-P(1)-O(7)	110.0(2)
O((14)-Mo(2)-O(13)	98.7(2)	O(4)-P(1)-O(5)	105.8(2)
0((14)-Mo(2)-O(2)	102.1(3)	O(4)-P(1)-O(7)	108.2(2)
0((14)-Mo(2)-O(11)#5	89.9(2)	O(5)-P(1)-O(7)	106.4(2)
O((12)#4-Rb(1)-O(9)#8	76.38(11)	O(9)-P(2)-O(7)	109.9(2)
O((12)#4-Rb(1)-O(4)#6	156.64(11)	O(9)-P(2)-O(10)	109.26(19)
O((12)#4-Rb(1)-O(5)#6	135.86(13)	O(7)-P(2)-O(10)	100.5(2)
0((12)#4-Rb(1)-O(3)#6	131.52(11)	O(8)-P(2)-O(9)	114.9(3)
O((12)#4-Rb(1)-O(8)#8	107.58(11)	O(8)-P(2)-O(7)	110.5(2)
0((4)#6-Rb(1)-O(9)#8	80.26(10)	O(8)-P(2)-O(10)	110.7(2)
0((4)#6-Rb(1)-O(5)#6	45.19(10)	O(12)-P(3)-O(10)	107.4(2)
O((4)#6-Rb(1)-O(3)#6	49.91(10)	O(13)-P(3)-O(12)	108.9(2)
O((4)#6-Rb(1)-O(8)#8	53.30(10)	O(13)-P(3)-O(10)	103.8(2)
O((5)#6-Rb(1)-O(9)#8	94.09(10)	O(11)-P(3)-O(12)	113.6(3)
O((5)#6-Rb(1)-O(3)#6	91.40(10)	O(11)-P(3)-O(13)	115.3(3)
O((3)#6-Rb(1)-O(9)#8	93.06(9)	O(11)-P(3)-O(10)	107.0(2)
Symmetry transformations used to generate equivalent atoms:				
#1	2-X,1/2+Y,1-Z		#2 1-X,-1/2+Y,1-Z	

<u> </u>	-
#1 2-X,1/2+Y,1-Z	#2 1-X,-1/2+Y,1-Z
#3 +X,1+Y,+Z	#4 1-X,1/2+Y,-Z
#5 2-X,1/2+Y,-Z	#6 1-X,1/2+Y,1-Z
#7 -1+X,1+Y,+Z	#8 1-X,-1/2+Y,-Z

		Dipole moment			
S	pecies	x	у	Z	Magnitude
[Mo(1)O ₆]		1.854	-0.747	3.024	3.456
[Mo(2)O ₆]		1.734	1.451	0.208	2.254
$[P(1)O_4]$		-2.050	-0.489	-0.719	2.155
$[P(2)O_4]$		-2.504	2.043	0.481	3.306
[P(3)O ₄]		-0.968	-0.223	2.865	3.128
$[Rb(1)O_0]$		1.452	3.286	3.004	4.583
[10(1)09]	Σ[ΜοΟ.]	-0.006	1.414	0.002	1.414
Unit cell	$\Sigma[\mathbf{PO}]$	0.003	2.660	-0.001	2.660
7.2	$\Sigma[PO_4]$	0	6.572	0	6.572
Z=2	ک[KbO9]	-0.003	10.646	0.001	10.646

Table S4. Detailed contributions from the $[MoO_6]$, $[PO_4]$ and $[RbO_9]$ as well as the total polarization of the whole unit cell in the $RbMo_2P_3O_{14}$ compound.

Figure S1. The XRD patterns of $RbMo_2P_3O_{14}$.

Figure S2. The bond lengths of Mo-O in $[MoO_6]$ octahedron.

Figure S3. The IR spectrum of $RbMo_2P_3O_{14}$.

Figure S4. The orientations of dipole moment for [MoO₆], [PO₄] and [RbO₉] polyhedra in RbMo₂P₃O₁₄.

Figure S5. The melting behavior of $RbMo_2P_3O_{14}$ was carried out on NETZSCH STA 449C simultaneous analyzer instrument. The sample and reference, Al_2O_3 , were enclosed in Pt crucibles, heated from 40 to 1000 °C at a heating rate of 10 °C/min under

flowing nitrogen gas. Differential thermal analysis shows that there is only one endothermic peak on the heating DSC curve, along with weight loss on the TG curve (Left). There is no obvious exothermic peak in the whole cooling process due to the excessive viscosity of sample. The measurement indicates that RbMo₂P₃O₁₄ may decompose before melting, and it may melt incongruently. Furthermore, to testify to this initial conclusion, RbMo₂P₃O₁₄ polycrystalline sample was melted in a platinum crucible and recrystallized. The powder XRD pattern of recrystallized substance was glassy state due to its excessive viscosity (Right).