Supporting information for

C-O and C-C Bond Cleavage of α,β-Unsaturated Esters by the Assist of Gallane(pyridyl)iron Complex

Takako Muraoka^{*}, Nursaliha Siti, and Keiji Ueno

Division of Molecular Science, Graduate School of Science and Technology,

Gunma University, Kiryu 376-8515, Japan

Table of contents

Figure S1; ¹ H NMR spectrum of the reaction mixture obtained by the reaction	on of 1 with
methyl methacrylate after removal of the volatiles in vacuo.	S3
Figures S2-S3; ¹ H and ¹³ C NMR spectra of 4.	S3-S4
Figure S4-S6; ¹ H and ¹³ C NMR and IR spectra of complex 5.	S4-S5
Figure S7-S9; ¹ H and ¹³ C NMR and IR spectra of crude 6.	S6-S7
Figure S10-S12; ¹ H and ¹³ C NMR and IR spectra of complex 7.	S7-S8
Figures S13 – S15; ¹ H and ¹³ C NMR and IR spectra of complex 8.	S9-S10
Table S1; Crystal data and structure refinement for complex 7.toluene.	S11
Table S2; Atomic coordinates and equivalent isotropic displacement parameter	eters for
7·toluene.	S12-S14
Table S3; Bond lengths and angles for 7·toluene.	S15-S19
Table S4; Anisotropic displacement parameters for 7.toluene.	S20-S22
Figure S16; ORTEP drawing of 7.	S23

Figure S1. ¹H NMR spectrum of the reaction mixture obtained by the reaction of **1** with methyl methacrylate after removal of the volatiles in vacuo (300 MHz, C_6D_6).

Figure S2. ¹H NMR spectrum of 4 (600 MHz, C₆D₆).

Figure S3. 13 C NMR spectrum of 4 (150.6 MHz, C₆D₆).

Figure S4. ¹H NMR spectrum of 5 (400 MHz, C₆D₆).

Figure S5. ¹³C NMR spectrum of 5 (150.6 MHz, C₆D₆).

Figure S6. IR spectrum of $5 (C_6 D_6)$.

Figure S7. ¹H NMR spectrum of crude 6 (400 MHz, C₆D₆).

Figure S8. ¹³C NMR spectrum of crude 6 (100.4 MHz, C_6D_6).

Figure S9. IR spectrum of crude 6 (C₆H₆).

Figure S10. ¹H NMR spectrum of 7 (600 MHz, C_6D_6).

Figure S11. ¹³C NMR spectrum of 7 (150.6 MHz, C₆D₆).

Figure S12. IR spectrum of 7 (CH₂Cl₂).

Figure S13. ¹H NMR spectrum of 8 (400 MHz, C_6D_6).

Figure S14. ¹³C NMR spectrum of 8 (150.6 MHz, C₆D₆).

Figure S15. IR spectrum of 8 (C₆D₆).

Complex	[Cp*(OC) ₂ FeC(=CH ₂)CH ₂ CH ₂ OGaMes ₂] ₂ ·C ₇ H ₈		
	(7·toluene)		
Empirical formula	$C_{75}H_{94}Fe_2Ga_2O_6$		
Formula weight	1342.64		
Temperature (K)	93(2)		
Wavelength (Å)	0.71073		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 13.572(3) Å		
	$b = 28.859(5) \text{ Å}$ $\beta = 99.767(5)^{\circ}$		
	c = 17.651(3) Å		
Volume (Å ³)	6813(2)		
Ζ	4		
$D_{\text{calc}} (\text{Mg} / \text{m}^3)$	1.309		
Absorption coefficient (mm ⁻¹)	1.250		
<i>F</i> (000)	2824		
Crystal Size (mm ³)	$0.30\times0.15\times0.05$		
θ Range for data collection (°)	2.734 - 27.584		
Index ranges	$-17 \le h \le 17, -37 \le k \le 37, -22 \le l \le 22$		
Reflections collected	117960		
Independent reflections [R(int)]	15691 [0.1118]		
Absorption correction	Semi-empirical from equivalents		
Maximum and minimum transmission	1.000 and 0.722		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	15691 / 0 / 789		
Goodness-of-fit on F^2	1.034		
Final <i>R</i> indices ^a $[I > 2\sigma(I)]$	R1 = 0.0368, wR2 = 0.0975		
R indices ^a (all data)	R1 = 0.0510, w $R2 = 0.1024$		
Largest difference in peak and hole (eÅ ⁻³)	1.097 and -0.384		

 Table S1. Crystal data and structure refinement for complex 7.toluene.

^a $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$ $wR2 = [\Sigma[w (Fo^2 - Fc^2)^2] / \Sigma[w (Fo^2)^2]]^{0.5},$ calc $w = 1 / [\sigma^2(Fo^2) + (0.0559 P)^2]$ where $P = (Fo^2 + 2Fc^2) / 3.$

U(eq)х Zy Fe(1) 2468(1) 6370(1) 1549(1) 25(1) Ga(1) 3428(1) 4281(1) 2550(1)19(1) O(1) 617(1) 5856(1) 1466(1) 45(1) O(2) 2101(2) 2759(1) 50(1) 6992(1) O(3) 2519(1) 2850(1) 4752(1) 21(1) C(1) 1365(2) 6048(1) 1525(1)31(1) C(2) 2243(2) 6741(1) 2285(2)33(1) C(3) 2123(2) 6493(1) 360(1) 30(1) C(4) 2509(2) 6901(1) 738(1) 31(1) C(5) 3506(2) 6803(1) 1130(2) 33(1) C(6) 3729(2) 6336(1) 971(1) 33(1) C(7) 2877(2) 6139(1) 510(1) 32(1) C(8) 1129(2) 6433(1) -150(2)43(1) C(9) 2008(2)7364(1) 698(2) 43(1) C(10) 4214(2) 7152(1) 1554(2)50(1) 4730(2) C(11) 6106(1) 1201(2) 46(1) C(12) 5663(1) 172(2) 2813(2) 46(1) C(13) 3259(2) 5965(1) 2355(1) 26(1) C(14) 3149(2) 24(1) 5441(1) 2277(1)C(15) 2575(2) 5249(1) 2871(1) 24(1) 3909(2) C(16) 2942(2) 38(1) 6131(1) C(17) 3231(2) 4309(1) 1405(1)21(1) C(18) 4016(2) 4478(1) 1048(1) 23(1) 3873(2)C(19) 4547(1) 257(1) 25(1) C(20) 2953(2) 4470(1) -212(1)26(1) C(21) 2190(2) 4299(1) 24(1) 135(1) C(22) 2311(2) 4206(1) 923(1) 22(1) C(23) 5042(2) 4586(1) 1501(1) 28(1) C(24) 2795(2) 4569(1) -1063(1)33(1) 1446(2) 3975(1) 27(1) C(25) 1211(1) C(26) 4726(2) 4150(1) 3231(1) 21(1)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for 7·toluene. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(27)	5159(2)	4441(1)	3841(1)	23(1)
C(28)	6013(2)	4303(1)	4345(1)	24(1)
C(29)	6462(2)	3878(1)	4266(1)	26(1)
C(30)	6056(2)	3597(1)	3659(1)	26(1)
C(31)	5200(2)	3727(1)	3137(1)	23(1)
C(32)	4718(2)	4908(1)	3963(1)	28(1)
C(33)	7390(2)	3736(1)	4823(1)	32(1)
C(34)	4831(2)	3399(1)	2481(1)	27(1)
Fe(2)	1559(1)	2152(1)	2127(1)	25(1)
Ga(2)	1745(1)	4395(1)	3476(1)	20(1)
O(4)	3304(2)	1578(1)	2069(2)	66(1)
O(5)	1575(2)	2625(1)	679(1)	60(1)
O(6)	2500(1)	3916(1)	3043(1)	21(1)
C(35)	2616(2)	1807(1)	2087(2)	42(1)
C(36)	1613(2)	2446(1)	1264(2)	38(1)
C(37)	524(2)	2271(1)	2892(1)	25(1)
C(38)	51(2)	2327(1)	2120(1)	27(1)
C(39)	110(2)	1894(1)	1731(1)	28(1)
C(40)	643(2)	1579(1)	2260(1)	28(1)
C(41)	918(2)	1814(1)	2980(1)	27(1)
C(42)	547(2)	2622(1)	3519(1)	33(1)
C(43)	-517(2)	2743(1)	1778(2)	37(1)
C(44)	-387(2)	1786(1)	924(1)	41(1)
C(45)	850(2)	1079(1)	2110(2)	40(1)
C(46)	1417(2)	1610(1)	3729(1)	40(1)
C(47)	2461(2)	2601(1)	2783(1)	25(1)
C(48)	2278(2)	3111(1)	2603(1)	23(1)
C(49)	2664(2)	3437(1)	3261(1)	23(1)
C(50)	3152(2)	2466(1)	3368(1)	32(1)
C(51)	335(2)	4250(1)	3027(1)	23(1)
C(52)	-193(2)	4425(1)	2327(1)	24(1)
C(53)	-1120(2)	4242(1)	2007(1)	27(1)
C(54)	-1575(2)	3896(1)	2368(1)	28(1)
C(55)	-1088(2)	3744(1)	3080(1)	28(1)
C(56)	-151(2)	3914(1)	3411(1)	24(1)
C(57)	201(2)	4832(1)	1929(1)	30(1)

C(58)	-2583(2)	3704(1)	2017(2)	37(1)
C(59)	306(2)	3743(1)	4201(1)	28(1)
C(60)	2098(2)	4586(1)	4572(1)	22(1)
C(61)	1564(2)	4964(1)	4809(1)	24(1)
C(62)	1703(2)	5095(1)	5581(1)	27(1)
C(63)	2381(2)	4868(1)	6137(1)	29(1)
C(64)	2908(2)	4499(1)	5903(1)	28(1)
C(65)	2783(2)	4356(1)	5138(1)	23(1)
C(66)	835(2)	5244(1)	4243(1)	29(1)
C(67)	2558(2)	5027(1)	6961(1)	41(1)
C(68)	3395(2)	3950(1)	4954(1)	33(1)
C(71)	4561(2)	2112(1)	5453(1)	35(1)
C(72)	4395(2)	2586(1)	5419(2)	49(1)
C(73)	5187(3)	2898(1)	5537(2)	64(1)
C(74)	6156(2)	2738(1)	5711(2)	51(1)
C(75)	6329(2)	2270(1)	5754(2)	43(1)
C(76)	5540(2)	1963(1)	5616(1)	36(1)
C(77)	3718(2)	1777(1)	5317(2)	50(1)

Fe(1)-C(2)	1.749(3)	C(20)-C(21)	1.381(3)
Fe(1)-C(1)	1.756(2)	C(20)-C(24)	1.508(3)
Fe(1)-C(13)	2.006(2)	C(21)-C(22)	1.398(3)
Fe(1)-C(3)	2.100(2)	C(22)-C(25)	1.513(3)
Fe(1)-C(4)	2.104(2)	C(26)-C(31)	1.404(3)
Fe(1)-C(5)	2.108(2)	C(26)-C(27)	1.412(3)
Fe(1)-C(7)	2.112(2)	C(27)-C(28)	1.394(3)
Fe(1)-C(6)	2.138(2)	C(27)-C(32)	1.504(3)
Ga(1)-O(6)	1.9556(14)	C(28)-C(29)	1.389(3)
Ga(1)-O(3)	1.9688(14)	C(29)-C(30)	1.380(3)
Ga(1)-C(26)	1.993(2)	C(29)-C(33)	1.517(3)
Ga(1)-C(17)	1.995(2)	C(30)-C(31)	1.405(3)
O(1)-C(1)	1.146(3)	C(31)-C(34)	1.513(3)
O(2)-C(2)	1.149(3)	Fe(2)-C(36)	1.755(3)
O(3)-C(15)	1.435(2)	Fe(2)-C(35)	1.758(3)
O(3)-Ga(2)	1.9448(14)	Fe(2)-C(47)	2.010(2)
C(3)-C(4)	1.408(3)	Fe(2)-C(41)	2.102(2)
C(3)-C(7)	1.439(3)	Fe(2)-C(40)	2.106(2)
C(3)-C(8)	1.500(3)	Fe(2)-C(38)	2.106(2)
C(4)-C(5)	1.439(3)	Fe(2)-C(39)	2.108(2)
C(4)-C(9)	1.497(3)	Fe(2)-C(37)	2.135(2)
C(5)-C(6)	1.420(3)	Ga(2)-O(6)	1.9539(14)
C(5)-C(10)	1.501(4)	Ga(2)-C(51)	1.988(2)
C(6)-C(7)	1.415(4)	Ga(2)-C(60)	1.990(2)
C(6)-C(11)	1.505(3)	O(4)-C(35)	1.148(3)
C(7)-C(12)	1.494(3)	O(5)-C(36)	1.148(3)
C(13)-C(16)	1.332(3)	O(6)-C(49)	1.440(2)
C(13)-C(14)	1.522(3)	C(37)-C(38)	1.414(3)
C(14)-C(15)	1.514(3)	C(37)-C(41)	1.423(3)
C(17)-C(18)	1.413(3)	C(37)-C(42)	1.496(3)
C(17)-C(22)	1.417(3)	C(38)-C(39)	1.434(3)
C(18)-C(19)	1.390(3)	C(38)-C(43)	1.499(3)
C(18)-C(23)	1.516(3)	C(39)-C(40)	1.413(3)
C(19)-C(20)	1.394(3)	C(39)-C(44)	1.502(3)

Table S3. Bond lengths [Å] and angles [°] for 7·toluene.

C(40)-C(41)	1.433(3)	C(60)-C(61)	1.412(3)
C(40)-C(45)	1.501(3)	C(61)-C(62)	1.395(3)
C(41)-C(46)	1.499(3)	C(61)-C(66)	1.514(3)
C(47)-C(50)	1.330(3)	C(62)-C(63)	1.390(3)
C(47)-C(48)	1.517(3)	C(63)-C(64)	1.383(3)
C(48)-C(49)	1.519(3)	C(63)-C(67)	1.506(3)
C(51)-C(56)	1.409(3)	C(64)-C(65)	1.395(3)
C(51)-C(52)	1.412(3)	C(65)-C(68)	1.505(3)
C(52)-C(53)	1.394(3)	C(71)-C(76)	1.380(3)
C(52)-C(57)	1.511(3)	C(71)-C(72)	1.385(4)
C(53)-C(54)	1.384(3)	C(71)-C(77)	1.486(4)
C(54)-C(55)	1.388(3)	C(72)-C(73)	1.391(4)
C(54)-C(58)	1.509(3)	C(73)-C(74)	1.378(5)
C(55)-C(56)	1.396(3)	C(74)-C(75)	1.373(4)
C(56)-C(59)	1.510(3)	C(75)-C(76)	1.379(4)
C(60)-C(65)	1.411(3)		
C(2)-Fe(1)-C(1)	94.89(11)	C(4)-Fe(1)-C(7)	66.26(9)
C(2)-Fe(1)-C(13)	88.22(10)	C(5)-Fe(1)-C(7)	65.98(10)
C(1)-Fe(1)-C(13)	93.43(10)	C(2)-Fe(1)-C(6)	129.56(11)
C(2)-Fe(1)-C(3)	126.92(10)	C(1)-Fe(1)-C(6)	135.47(11)
C(1)-Fe(1)-C(3)	91.23(10)	C(13)-Fe(1)-C(6)	86.36(9)
C(13)-Fe(1)-C(3)	143.99(9)	C(3)-Fe(1)-C(6)	65.95(9)
C(2)-Fe(1)-C(4)	95.07(11)	C(4)-Fe(1)-C(6)	65.99(9)
C(1)-Fe(1)-C(4)	119.33(10)	C(5)-Fe(1)-C(6)	39.06(9)
C(13)-Fe(1)-C(4)	146.54(9)	C(7)-Fe(1)-C(6)	38.90(10)
C(3)-Fe(1)-C(4)	39.12(9)	O(6)-Ga(1)-O(3)	76.86(6)
C(2)-Fe(1)-C(5)	96.25(11)	O(6)-Ga(1)-C(26)	101.50(7)
C(1)-Fe(1)-C(5)	157.34(10)	O(3)-Ga(1)-C(26)	119.89(7)
C(13)-Fe(1)-C(5)	106.57(9)	O(6)-Ga(1)-C(17)	119.14(7)
C(3)-Fe(1)-C(5)	66.34(9)	O(3)-Ga(1)-C(17)	105.19(7)
C(4)-Fe(1)-C(5)	39.97(9)	C(26)-Ga(1)-C(17)	124.88(8)
C(2)-Fe(1)-C(7)	160.47(10)	C(15)-O(3)-Ga(2)	123.13(12)
C(1)-Fe(1)-C(7)	99.30(11)	C(15)-O(3)-Ga(1)	131.58(12)
C(13)-Fe(1)-C(7)	104.16(9)	Ga(2)-O(3)-Ga(1)	102.13(6)
C(3)-Fe(1)-C(7)	39.94(9)	O(1)-C(1)-Fe(1)	175.3(2)

O(2)-C(2)-Fe(1)	178.5(2)	C(18)-C(17)-C(22)	117.27(19)
C(4)-C(3)-C(7)	108.1(2)	C(18)-C(17)-Ga(1)	118.97(15)
C(4)-C(3)-C(8)	127.3(2)	C(22)-C(17)-Ga(1)	123.53(15)
C(7)-C(3)-C(8)	124.5(2)	C(19)-C(18)-C(17)	120.66(19)
C(4)-C(3)-Fe(1)	70.57(13)	C(19)-C(18)-C(23)	117.35(19)
C(7)-C(3)-Fe(1)	70.47(13)	C(17)-C(18)-C(23)	121.98(19)
C(8)-C(3)-Fe(1)	127.29(17)	C(18)-C(19)-C(20)	122.1(2)
C(3)-C(4)-C(5)	107.9(2)	C(21)-C(20)-C(19)	117.2(2)
C(3)-C(4)-C(9)	126.5(2)	C(21)-C(20)-C(24)	121.3(2)
C(5)-C(4)-C(9)	125.4(2)	C(19)-C(20)-C(24)	121.5(2)
C(3)-C(4)-Fe(1)	70.31(13)	C(20)-C(21)-C(22)	122.6(2)
C(5)-C(4)-Fe(1)	70.16(13)	C(21)-C(22)-C(17)	120.02(19)
C(9)-C(4)-Fe(1)	128.18(17)	C(21)-C(22)-C(25)	116.82(18)
C(6)-C(5)-C(4)	107.8(2)	C(17)-C(22)-C(25)	123.08(19)
C(6)-C(5)-C(10)	126.5(2)	C(31)-C(26)-C(27)	117.85(19)
C(4)-C(5)-C(10)	125.3(2)	C(31)-C(26)-Ga(1)	118.00(15)
C(6)-C(5)-Fe(1)	71.63(14)	C(27)-C(26)-Ga(1)	123.97(15)
C(4)-C(5)-Fe(1)	69.86(13)	C(28)-C(27)-C(26)	120.72(19)
C(10)-C(5)-Fe(1)	129.27(19)	C(28)-C(27)-C(32)	118.17(19)
C(7)-C(6)-C(5)	108.3(2)	C(26)-C(27)-C(32)	121.11(18)
C(7)-C(6)-C(11)	126.2(2)	C(29)-C(28)-C(27)	121.3(2)
C(5)-C(6)-C(11)	125.3(2)	C(30)-C(29)-C(28)	118.21(19)
C(7)-C(6)-Fe(1)	69.55(14)	C(30)-C(29)-C(33)	121.5(2)
C(5)-C(6)-Fe(1)	69.31(13)	C(28)-C(29)-C(33)	120.24(19)
C(11)-C(6)-Fe(1)	130.62(18)	C(29)-C(30)-C(31)	122.0(2)
C(6)-C(7)-C(3)	107.9(2)	C(26)-C(31)-C(30)	119.92(19)
C(6)-C(7)-C(12)	125.8(2)	C(26)-C(31)-C(34)	122.38(19)
C(3)-C(7)-C(12)	126.1(2)	C(30)-C(31)-C(34)	117.70(19)
C(6)-C(7)-Fe(1)	71.55(14)	C(36)-Fe(2)-C(35)	94.87(13)
C(3)-C(7)-Fe(1)	69.59(13)	C(36)-Fe(2)-C(47)	94.47(10)
C(12)-C(7)-Fe(1)	129.05(18)	C(35)-Fe(2)-C(47)	88.10(10)
C(16)-C(13)-C(14)	118.0(2)	C(36)-Fe(2)-C(41)	158.25(11)
C(16)-C(13)-Fe(1)	123.14(17)	C(35)-Fe(2)-C(41)	101.83(12)
C(14)-C(13)-Fe(1)	118.82(15)	C(47)-Fe(2)-C(41)	99.87(9)
C(15)-C(14)-C(13)	110.84(18)	C(36)-Fe(2)-C(40)	126.07(10)
O(3)-C(15)-C(14)	112.36(17)	C(35)-Fe(2)-C(40)	93.47(11)

C(47)-Fe(2)-C(40)	139.02(9)	C(42)-C(37)-Fe(2)	130.10(15)
C(41)-Fe(2)-C(40)	39.81(9)	C(37)-C(38)-C(39)	108.08(19)
C(36)-Fe(2)-C(38)	93.61(11)	C(37)-C(38)-C(43)	126.7(2)
C(35)-Fe(2)-C(38)	159.14(10)	C(39)-C(38)-C(43)	124.9(2)
C(47)-Fe(2)-C(38)	110.20(9)	C(37)-C(38)-Fe(2)	71.64(13)
C(41)-Fe(2)-C(38)	66.14(9)	C(39)-C(38)-Fe(2)	70.15(12)
C(40)-Fe(2)-C(38)	66.25(9)	C(43)-C(38)-Fe(2)	128.84(17)
C(36)-Fe(2)-C(39)	93.24(10)	C(40)-C(39)-C(38)	107.92(19)
C(35)-Fe(2)-C(39)	120.58(10)	C(40)-C(39)-C(44)	126.2(2)
C(47)-Fe(2)-C(39)	149.49(9)	C(38)-C(39)-C(44)	125.7(2)
C(41)-Fe(2)-C(39)	66.30(8)	C(40)-C(39)-Fe(2)	70.35(13)
C(40)-Fe(2)-C(39)	39.19(9)	C(38)-C(39)-Fe(2)	70.07(12)
C(38)-Fe(2)-C(39)	39.78(9)	C(44)-C(39)-Fe(2)	129.24(17)
C(36)-Fe(2)-C(37)	126.85(11)	C(39)-C(40)-C(41)	107.98(19)
C(35)-Fe(2)-C(37)	138.19(12)	C(39)-C(40)-C(45)	126.3(2)
C(47)-Fe(2)-C(37)	86.15(8)	C(41)-C(40)-C(45)	125.7(2)
C(41)-Fe(2)-C(37)	39.22(8)	C(39)-C(40)-Fe(2)	70.46(13)
C(40)-Fe(2)-C(37)	65.91(9)	C(41)-C(40)-Fe(2)	69.95(12)
C(38)-Fe(2)-C(37)	38.93(8)	C(45)-C(40)-Fe(2)	127.08(17)
C(39)-Fe(2)-C(37)	65.80(8)	C(37)-C(41)-C(40)	107.82(19)
O(3)-Ga(2)-O(6)	77.46(6)	C(37)-C(41)-C(46)	124.4(2)
O(3)-Ga(2)-C(51)	117.50(8)	C(40)-C(41)-C(46)	127.3(2)
O(6)-Ga(2)-C(51)	103.21(7)	C(37)-C(41)-Fe(2)	71.65(12)
O(3)-Ga(2)-C(60)	109.95(7)	C(40)-C(41)-Fe(2)	70.25(13)
O(6)-Ga(2)-C(60)	121.38(7)	C(46)-C(41)-Fe(2)	129.37(17)
C(51)-Ga(2)-C(60)	120.18(9)	C(50)-C(47)-C(48)	121.05(19)
C(49)-O(6)-Ga(2)	129.86(12)	C(50)-C(47)-Fe(2)	122.63(17)
C(49)-O(6)-Ga(1)	123.64(12)	C(48)-C(47)-Fe(2)	116.24(15)
Ga(2)-O(6)-Ga(1)	102.29(6)	C(47)-C(48)-C(49)	114.71(17)
O(4)-C(35)-Fe(2)	179.1(3)	O(6)-C(49)-C(48)	111.81(16)
O(5)-C(36)-Fe(2)	174.7(2)	C(56)-C(51)-C(52)	117.27(19)
C(38)-C(37)-C(41)	108.13(19)	C(56)-C(51)-Ga(2)	116.78(15)
C(38)-C(37)-C(42)	125.9(2)	C(52)-C(51)-Ga(2)	125.74(16)
C(41)-C(37)-C(42)	125.9(2)	C(53)-C(52)-C(51)	120.5(2)
C(38)-C(37)-Fe(2)	69.43(13)	C(53)-C(52)-C(57)	118.2(2)
C(41)-C(37)-Fe(2)	69.12(12)	C(51)-C(52)-C(57)	121.24(19)

C(54)-C(53)-C(52)	122.0(2)	C(64)-C(63)-C(62)	117.8(2)
C(53)-C(54)-C(55)	117.7(2)	C(64)-C(63)-C(67)	121.1(2)
C(53)-C(54)-C(58)	121.3(2)	C(62)-C(63)-C(67)	121.1(2)
C(55)-C(54)-C(58)	121.0(2)	C(63)-C(64)-C(65)	122.1(2)
C(54)-C(55)-C(56)	121.8(2)	C(64)-C(65)-C(60)	120.31(19)
C(55)-C(56)-C(51)	120.5(2)	C(64)-C(65)-C(68)	117.37(19)
C(55)-C(56)-C(59)	118.3(2)	C(60)-C(65)-C(68)	122.31(19)
C(51)-C(56)-C(59)	121.13(19)	C(76)-C(71)-C(72)	117.5(2)
C(65)-C(60)-C(61)	117.53(19)	C(76)-C(71)-C(77)	121.2(2)
C(65)-C(60)-Ga(2)	125.49(15)	C(72)-C(71)-C(77)	121.3(3)
C(61)-C(60)-Ga(2)	116.83(15)	C(71)-C(72)-C(73)	121.1(3)
C(62)-C(61)-C(60)	120.6(2)	C(74)-C(73)-C(72)	120.1(3)
C(62)-C(61)-C(66)	117.71(19)	C(75)-C(74)-C(73)	119.3(3)
C(60)-C(61)-C(66)	121.73(19)	C(74)-C(75)-C(76)	120.2(3)
C(63)-C(62)-C(61)	121.7(2)	C(71)-C(76)-C(75)	121.9(2)

Symmetry transformations used to generate equivalent atoms:

isplacement factor exponent takes the form. $-2\pi [n \ u \ O_{11} + \dots + 2n \kappa u \ O_{12}]$						
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Fe(1)	23(1)	23(1)	28(1)	2(1)	5(1)	0(1)
Ga(1)	18(1)	23(1)	17(1)	-1(1)	2(1)	-1(1)
O (1)	28(1)	43(1)	62(1)	20(1)	0(1)	-6(1)
O(2)	48(1)	56(1)	47(1)	-17(1)	7(1)	11(1)
O(3)	21(1)	20(1)	22(1)	0(1)	5(1)	0(1)
C(1)	31(1)	30(1)	31(1)	9(1)	3(1)	2(1)
C(2)	28(1)	34(1)	39(1)	1(1)	5(1)	3(1)
C(3)	33(1)	30(1)	29(1)	7(1)	8(1)	2(1)
C(4)	32(1)	26(1)	38(1)	9(1)	14(1)	1(1)
C(5)	27(1)	32(1)	42(1)	4(1)	10(1)	-4(1)
C(6)	31(1)	36(1)	36(1)	7(1)	13(1)	7(1)
C(7)	40(1)	30(1)	26(1)	6(1)	9(1)	5(1)
C(8)	44(2)	45(2)	36(1)	10(1)	-2(1)	1(1)
C(9)	49(2)	29(1)	53(2)	11(1)	19(1)	8(1)
C(10)	39(2)	46(2)	65(2)	-1(1)	11(1)	-14(1)
C(11)	36(1)	56(2)	50(2)	11(1)	16(1)	15(1)
C(12)	74(2)	33(1)	32(1)	0(1)	9(1)	10(1)
C(13)	25(1)	25(1)	28(1)	3(1)	5(1)	-1(1)
C(14)	25(1)	24(1)	23(1)	2(1)	3(1)	1(1)
C(15)	24(1)	21(1)	26(1)	0(1)	1(1)	2(1)
C(16)	40(1)	26(1)	44(2)	3(1)	-5(1)	-2(1)
C(17)	21(1)	23(1)	19(1)	-1(1)	2(1)	1(1)
C(18)	23(1)	24(1)	21(1)	0(1)	4(1)	2(1)
C(19)	26(1)	26(1)	24(1)	1(1)	9(1)	0(1)
C(20)	33(1)	22(1)	21(1)	-1(1)	3(1)	-1(1)
C(21)	26(1)	27(1)	20(1)	-3(1)	-1(1)	0(1)
C(22)	23(1)	24(1)	20(1)	-2(1)	3(1)	1(1)
C(23)	23(1)	35(1)	27(1)	1(1)	6(1)	-3(1)
C(24)	42(1)	37(1)	20(1)	1(1)	3(1)	-4(1)
C(25)	23(1)	36(1)	22(1)	0(1)	0(1)	-4(1)
C(26)	19(1)	26(1)	19(1)	0(1)	4(1)	-1(1)
C(27)	22(1)	26(1)	21(1)	1(1)	3(1)	0(1)
C(28)	23(1)	28(1)	21(1)	-1(1)	-1(1)	-2(1)

Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **7**·**toluene**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

C(29)	22(1)	29(1)	24(1)	4(1)	-1(1)	-2(1)
C(30)	24(1)	24(1)	28(1)	2(1)	4(1)	2(1)
C(31)	20(1)	27(1)	23(1)	0(1)	4(1)	-3(1)
C(32)	28(1)	27(1)	26(1)	-5(1)	-3(1)	2(1)
C(33)	29(1)	32(1)	31(1)	4(1)	-5(1)	2(1)
C(34)	25(1)	28(1)	27(1)	-4(1)	3(1)	1(1)
Fe(2)	26(1)	24(1)	26(1)	-4(1)	5(1)	-2(1)
Ga(2)	19(1)	22(1)	18(1)	-1(1)	3(1)	0(1)
O(4)	39(1)	54(1)	104(2)	-35(1)	10(1)	10(1)
O(5)	83(2)	68(1)	29(1)	2(1)	14(1)	-30(1)
O(6)	21(1)	20(1)	22(1)	-1(1)	6(1)	0(1)
C(35)	36(1)	35(1)	54(2)	-18(1)	8(1)	-5(1)
C(36)	44(2)	40(1)	31(1)	-9(1)	11(1)	-16(1)
C(37)	23(1)	26(1)	27(1)	-2(1)	5(1)	-6(1)
C(38)	22(1)	30(1)	29(1)	1(1)	5(1)	-2(1)
C(39)	27(1)	31(1)	24(1)	0(1)	1(1)	-4(1)
C(40)	29(1)	24(1)	31(1)	0(1)	2(1)	-4(1)
C(41)	28(1)	26(1)	25(1)	2(1)	1(1)	-4(1)
C(42)	34(1)	37(1)	31(1)	-6(1)	13(1)	-6(1)
C(43)	34(1)	33(1)	43(2)	8(1)	1(1)	4(1)
C(44)	48(2)	46(2)	26(1)	-3(1)	-4(1)	-10(1)
C(45)	47(2)	24(1)	47(2)	-6(1)	3(1)	-4(1)
C(46)	46(2)	36(1)	33(1)	7(1)	-8(1)	-6(1)
C(47)	24(1)	24(1)	26(1)	-4(1)	6(1)	-3(1)
C(48)	21(1)	25(1)	22(1)	0(1)	3(1)	-2(1)
C(49)	25(1)	21(1)	22(1)	0(1)	5(1)	0(1)
C(50)	29(1)	24(1)	39(1)	-1(1)	0(1)	-2(1)
C(51)	22(1)	24(1)	23(1)	-3(1)	6(1)	2(1)
C(52)	22(1)	25(1)	27(1)	-3(1)	6(1)	2(1)
C(53)	23(1)	31(1)	25(1)	-3(1)	1(1)	4(1)
C(54)	20(1)	33(1)	31(1)	-7(1)	5(1)	-1(1)
C(55)	25(1)	29(1)	32(1)	-4(1)	14(1)	-3(1)
C(56)	24(1)	25(1)	24(1)	-4(1)	8(1)	2(1)
C(57)	27(1)	32(1)	29(1)	5(1)	-1(1)	-1(1)
C(58)	25(1)	43(1)	41(1)	-5(1)	3(1)	-6(1)
C(59)	30(1)	31(1)	25(1)	0(1)	9(1)	-4(1)

C(60)	22(1)	25(1)	19(1)	-2(1)	5(1)	-1(1)
C(61)	22(1)	25(1)	25(1)	-2(1)	7(1)	-2(1)
C(62)	30(1)	25(1)	29(1)	-5(1)	12(1)	-1(1)
C(63)	37(1)	29(1)	21(1)	-4(1)	10(1)	-5(1)
C(64)	32(1)	30(1)	20(1)	1(1)	2(1)	-1(1)
C(65)	25(1)	25(1)	21(1)	-1(1)	7(1)	0(1)
C(66)	26(1)	30(1)	31(1)	-4(1)	5(1)	4(1)
C(67)	57(2)	42(1)	23(1)	-6(1)	9(1)	1(1)
C(68)	39(1)	34(1)	23(1)	-3(1)	-2(1)	11(1)
C(71)	37(1)	40(1)	27(1)	3(1)	4(1)	-1(1)
C(72)	47(2)	41(2)	56(2)	-4(1)	-3(1)	11(1)
C(73)	73(2)	37(2)	72(2)	-4(2)	-11(2)	6(2)
C(74)	52(2)	48(2)	51(2)	1(1)	-1(1)	-14(1)
C(75)	35(1)	55(2)	38(1)	5(1)	6(1)	0(1)
C(76)	39(1)	37(1)	32(1)	3(1)	6(1)	7(1)
C(77)	45(2)	57(2)	45(2)	11(1)	0(1)	-8(1)

Figure S16. ORTEP drawing of **7** (thermal ellipsoids at the 50% probability level). Hydrogen atoms are omitted for clarity.