Supporting Information

Construction of Fe-doped CoP with hybrid nanostructures as a

bifunctional catalyst for overall water splitting

Qinghua Yang¹, Haojiang Dai,² Wenhao Liao,² Xianfeng Tong,² Yingyan Fu,² Min Qian,² Tianyun Chen^{2*}

¹School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China

²School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China

Supplementary Figures and Tables

Fig. S1 (a) SEM and (b, c) TEM images of Co-PBA

Fig. S2 (a, b) TEM and (c) SEM images of HIP and (d) SEM image of CoP without doping of Fe^{3+}

Fig. S3 XRD pattern of Co-PBA, HIP and Fe_{0.25}-HIP

Fig. S4 The elemental composition and contents of Fe_{0.25}-CoP **Fig. S5** CV curves of (a) CoP, (b) Fe_{0.33}-CoP, (c) Fe_{0.25}-CoP and (d) Fe_{0.20}-CoP for HER

Fig. S6 CV curves of (a) CoP, (b) Fe_{0.33}-CoP, (c) Fe_{0.25}-CoP and (d) Fe_{0.20}-CoP for OER

Fig. S7 The electrochemical surface area (ECSA) of CoP, $Fe_{0.33}$ -CoP, $Fe_{0.25}$ -CoP and $Fe_{0.20}$ -CoP

Fig. S8 (a) TEM image and (b) polarization curves of the phosphide which was prepared without the addition of Co-PBA

Fig. S9 Polarization curves of HIP and Fe_{0.25}-HIP measured in 1.0 M KOH electrolyte

Fig. S10 (a) XRD pattern and SEM image (b) before and (c) after durability tests for $Fe_{0.25}$ -CoP

Fig. S11 XPS spectra of (a) survey, (b) Co 2p, (c) P 2p and (d) Fe 2p for $Fe_{0.25}$ -CoP after the water oxidation

Catalyst	Voltage at 10 mA·cm ⁻ ² (V)	Electrolyte	Reference
Fe _{0.25} -CoP	1.57	1.0 M KOH	[This work]
(Ni ₁₁ (HPO ₃) ₈ (OH) ₆	1.60	1.0 M KOH	1
Ni/NiS/NC	1.61	1.0 M KOH	2
C-(Fe-Ni)P@PC/(Ni- Co)P@CC	1.63	1.0 M KOH	3
MoS ₂ /LDH	1.57	1.0 M KOH	4
VOOH-3Fe	1.53	1.0 M KOH	5
E-Mo-NiCoP	1.61	1.0 M KOH	6
Co ₄ S ₃ /Mo ₂ C-NSC	1.62	1.0 M KOH	7
CoP NF	1.65	1.0 M KOH	8
P-CoS ₂ HNA/CC	1.56	1.0 M KOH	9
Ni/Ni(OH) ₂	1.59	1.0 M KOH	10

Table. S1 Comparison of the overall water splitting properties of Fe_{0.25}-CoP with some previously reported bifunctional catalysts

References

- P. W. Menezes, C. Panda, S. Loos, F. Bunschei-Bruns, C. Walter, M. Schwarze, X. Deng, H. Dau and M. Driess, *Energy Environ. Sci.*, 2018, 11, 1287-1298.
- 2. J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, V. Linkov and R. Wang, *Int. J. Hydrog. Energy*, 2019, **44**, 2832-2840.
- 3. C.-N. Lv, L. Zhang, X.-H. Huang, Y.-X. Zhu, X. Zhang, J.-S. Hu and S.-Y. Lu, *Nano Energy*, 2019, **65**, 103995.
- P. Xiong, X. Zhang, H. Wan, S. Wang, Y. Zhao, J. Zhang, D. Zhou, W. Gao, R. Ma, T. Sasaki and G. Wang, *Nano Lett*, 2019, 19, 4518-4526.
- J. Zhang, R. Cui, C. Gao, L. Bian, Y. Pu, X. Zhu, X. Li and W. Huang, *Small*, 2019, 15, 1904688.
- 6. J. Lin, Y. Yan, C. Li, X. Si, H. Wang, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, *Nanomicro Lett*, 2019, **11**, 55.
- Y. Liu, X. Luo, C. Zhou, S. Du, D. Zhen, B. Chen, J. Li, Q. Wu, Y. Iru and D. Chen, *Appl. Catal. B*, 2020, 260, 118197.
- 8. L. Ji, J. Wang, X. Teng, T. J. Meyer and Z. Chen, *ACS Catal.*, 2019, **10**, 412-419.
- 9. Y. Li, Z. Mao, Q. Wang, D. Li, R. Wang, B. He, Y. Gong and H. Wang, *Chem. Eng. J.*, 2020, **390**.

10. L. Dai, Z. N. Chen, L. Li, P. Yin, Z. Liu and H. Zhang, *Adv Mater*, 2020, **32**, 1906915.