Supporting Information

K₃Na(TaF₇)(SiF₆): A Mixed-anion Pentanary Fluoride with Zero Dimensional Anions Exhibiting Large Band Gap

Ru-Ling Tang,*^a Xin Lian,^a Wen-Dong Yao,^a Wenlong Liu,^a and Sheng-Ping Guo*^a

[†]School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.

R. China

Corresponding author: spguo@yzu.edu.cn, rltang@yzu.edu.cn

Supplementary Information Index

Figures and Tables

- 1) **Table S1.** Bond lengths for $K_3Na(TaF_7)(SiF_6)$.
- 2) **Table S2.** Selected bond angles for $K_3Na(TaF_7)(SiF_6)$.
- 3) **Table S3.** Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement Parameters (Å2 $\times 10^3$) for K₃Na(TaF₇)(SiF₆).
- 4) Figure S1. The EDS elemental analysis of $K_3Na(TaF_7)(SiF_6)$.
- 5) Figure S2. The coordination geometries of K(1) (a), K(2) (b), Na(1) (c), Na(2) (d), Ta(1) (e) and Si(1) (f) in the structure of K₃Na(TaF₇)(SiF₆).
- 6) **Figure S3.** The coordination geometries of K(1) (a), K(2) (b), Ta(1) (c) in the structure of α -K₂TaF₇ and K(1) (d), K(2) (e) and Ta(1) (f) in the structure of β -K₂TaF₇.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Si(1)	F(1)	1.665(3)	K(2)	F(1)	2.760(3)
Si(1)	F(1) ³	1.665(3)	K(2)	$F(2)^{1}$	2.772(2)
Si(1)	F(3) ⁵	1.678(3)	K(2)	F(2) ⁹	2.772(2)
Si(1)	F(3)	1.678(3)	K(2)	F(2) ⁶	2.772(2)
Si(1)	F(5) ⁵	1.702(3)	K(2)	$F(2)^{15}$	2.772(2)
Si(1)	F(5)	1.702(3)	K(2)	$F(5)^{10}$	2.891(2)
Ta(1)	F(2)	1.925(2)	K(2)	F(5)	2.891(2)
Ta(1)	F(2) ⁶	1.925(2)	K(2)	F(5) ⁵	2.891(2)
Ta(1)	F(2) ⁹	1.925(2)	K(2)	F(5) ⁴	2.891(2)
Ta(1)	F(2) ¹⁰	1.925(2)	K(2)	F(6) ¹	2.8475(3)
Ta(1)	F(4) ⁶	1.932(3)	K(2)	F(6)	2.8475(3)
Ta(1)	F(4)	1.932(3)	Na(1)	F(5) ¹⁷	2.242(3)
Ta(1)	F(6)	2.032(4)	Na(1)	F(5) ⁷	2.242(3)
K(1)	F(1)	2.9870(10)	Na(1)	F(5) ⁴	2.242(3)
K(1)	F(1) ⁷	2.9870(10)	Na(1)	F(5) ⁵	2.242(3)
K(1)	F(2)	2.915(2)	Na(1)	F(6)	2.361(4)
K(1)	F(2) ⁹	2.915(2)	Na(1)	F(6) ¹⁶	2.361(4)
K(1)	F(2) ¹¹	2.729(2)	Na(2)	F(3) ¹⁸	2.365(3)
K(1)	$F(2)^{12}$	2.729(2)	Na(2)	F(3)	2.365(3)
K(1)	F(3) ⁵	2.843(2)	Na(2)	F(3) ⁵	2.365(3)
K(1)	F(3) ⁷	2.843(2)	Na(2)	$F(3)^{21}$	2.365(3)
K(1)	$F(4)^{11}$	3.028(2)	Na(2)	$F(4)^{20}$	2.503(3)
K(1)	F(4) ¹³	3.028(2)	Na(2)	F(4) ¹⁹	2.503(3)
K(1)	F(5) ⁷	3.393(3)	Na(2)	$F(4)^{22}$	2.503(3)
K(1)	F(5) ⁵	3.393(3)	Na(2)	$F(4)^{13}$	2.503(3)
K(2)	$F(1)^{14}$	2.760(3)	Na(2)	$F(3)^{21}$	2.365(3)

Table S1. Bond lengths for K₃Na(TaF₇)(SiF₆).

¹-1+x, +y, +z; ²-1+x, +y, -z; ³+x, +y, -z; ⁴-1-x, -y, -z; ⁵-1-x, +y, -z; ⁶-x, -y, +z; ⁷1+x, +y, +z; ⁸1/2+x, -1/2+y, 1/2+z; ⁹-x, +y, +z; ¹⁰+x, -y, +z; ¹¹1/2-x, 1/2-y, 1/2-z; ¹²-1/2+x, 1/2-y, 1/2-z; ¹³-1/2+x, 1/2+y, 1/2-z; ¹⁴-1-x, -y, +z; ¹⁵-1+x, -y, +z; ¹⁶-x, -y, -z; ¹⁷1+x, -y, +z; ¹⁸-1-x, 1-y, -z; ¹⁹-1/2-x, 1/2-y, 1/2-z; ²⁰-1/2+x, 1/2+y, -1/2+z; ²¹+x, 1-y, +z; ²²-1/2-x, 1/2-y, -1/2+z; ²³1/2+x, -1/2+y, 1/2-z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
F(1) ²	Si(1)	F(1)	178.8(2)	F(2) ⁶	Ta(1)	F(2) ⁹	81.38(13)
F(1) ²	Si(1)	F(3)	90.43(8)	F(2)	Ta(1)	F(2) ⁹	92.73(13)
F(1)	Si(1)	F(3) ⁵	90.43(8)	F(2)	Ta(1)	F(2) ⁶	153.87(12)
F(1)	Si(1)	F(3)	90.43(8)	F(2)	Ta(1)	F(2) ¹⁰	81.38(13)
F(1) ²	Si(1)	F(3) ⁵	90.43(8)	F(2) ⁶	Ta(1)	F(2) ¹⁰	92.73(13)
F(1) ²	Si(1)	F(5) ⁵	89.56(8)	F(2) ⁹	Ta(1)	F(2) ¹⁰	153.87(12)
F(1)	Si(1)	F(5)	89.56(8)	F(2) ⁹	Ta(1)	F(4) ⁶	125.16(8)
F(1) ²	Si(1)	F(5)	89.56(8)	F(2) ⁶	Ta(1)	$(4)^{6}$	77.48(9)
F(1)	Si(1)	F(5) ⁵	89.56(8)	F(2)	Ta(1)	F(4) ⁶	125.16(8)
F(3) ⁵	Si(1)	F(3)	91.5(2)	F(2) ¹⁰	Ta(1)	F(4) ⁶	77.48(9)
F(3) ⁵	Si(1)	F(5) ⁵	90.13(14)	F(2) ⁹	Ta(1)	F(4)	77.48(9)
F(3)	Si(1)	F(5)	90.13(14)	F(2) ¹⁰	Ta(1)	F(4)	125.16(8)
F(3) ⁵	Si(1)	F(5)	178.35(17)	F(2)	Ta(1)	F(4)	77.48(9)
F(3)	Si(1)	F(5) ⁵	178.35(17)	F(2) ⁶	Ta(1)	F(4)	125.16(8)
F(3)	Si(1)	F(5) ⁵	88.2(2)	F(2) ¹⁰	Ta(1)	F(6)	76.93(6)
F(4) ⁶	Ta(1)	F(4)	74.9(2)	F(2) ⁹	Ta(1)	F(6)	76.93(6)
F(4)	Ta(1)	F(6)	142.56(10)	F(2)	Ta(1)	F(6)	76.93(6)
F(4) ⁶	Ta(1)	F(6)	142.56(10)	F(2) ⁶	Ta(1)	F(6)	76.93(6)

Table S2. Selected bond angles for K₃Na(TaF₇)(SiF₆).

Atom	x	у	Ζ	$U_{ m eq}/{ m \AA^2}$	BVS
Si(1)	-5000	2300.3(14)	0	10.7(3)	4.55(8)
Ta(1)	0	0	2699.2(2)	12.82(8)	5.27(9)
K(1)	0	2872.2(10)	1395.5(7)	24.3(2)	0.91(8)
K(2)	-5000	0	1327.9(9)	17.6(3)	1.28(7)
Na(1)	0	0	0	13.7(7)	1.15(2)
Na(2)	-5000	5000	0	23.0(9)	1.02(4)
F(1)	-5000	2285(3)	1022.9(17)	26.7(7)	1.05(6)
F(2)	2209(4)	1172.3(17)	2431.8(12)	23.0(5)	1.22(5)
F(3)	-7117(5)	3286(2)	0	22.0(6)	1.11(7)
F(4)	2068(6)	0	3641.9(18)	30.4(7)	1.07(8)
F(5)	-7085(5)	1272(2)	0	28.4(7)	1.15(1)
F(6)	0	0	1451(2)	22.1(9)	1.05(8)

Table S3. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement Parameters (Å2 $\times 10^3$) for K₃Na(TaF₇)(SiF₆).

 ${}^{\mathrm{a}}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Figure S1. EDS elemental analysis of K₃Na(TaF₇)(SiF₆).

Figure S2. The coordination geometries of K(1) (a), K(2) (b), Na(1) (c), Na(2) (d), Ta(1) (e) and Si(1) (f) in the structure of $K_3Na(TaF_7)(SiF_6)$.

Figure S3. The coordination geometries of K(1) (a), K(2) (b), Ta(1) (c) in the structure of α -K₂TaF₇ and K(1) (d), K(2) (e) and Ta(1) (f) in the structure of β -K₂TaF₇.