Supplementary information to accompany

Rich Redox-Activity and Solvatochromism in a Family of Heteroleptic Cobalt Complexes

Vincent L. Nadurata, Moya A. Hay, Jett T. Janetzki, Gemma K. Gransbury, and Colette Boskovic*

Chart S1 Valence tautomeric equilibria of complexes computationally predicted to exhibit VT.¹

Fig. S1 Thermogravimetric analysis of **1**, **2**, **2H**·0.2H₂O, **3**, **4**, and **5**(PF₆)·0.5THF. Mass loss profile in blue, and scaled negative of the first derivative in red.

Fig. S2 Calculated PXRD patterns of the crystal structures (blue) vs. experimental PXRD patterns of the bulk samples of **1**, **2**, **2H** \cdot 0.2H₂O, **3**, **4**, and **5**(PF₆) \cdot 0.5THF (red). All measurements collected at 100 K, except for **3** (300 K) and **5**(PF₆) \cdot 0.5THF (175 K). For **2**, the theoretical pattern is calculated from the crystal structure of the freshly mounted crystal, **2** \cdot 0.1H₂O. The agreement of the experimental pattern of **2** with the calculated pattern of **2** \cdot 0.1H₂O indicates that the partial loss of solvent in the bulk sample is not accompanied by a loss in crystallinity. Likewise, for **2H** \cdot 0.2H₂O, the theoretical pattern is calculated from the crystal structure of the freshly mounted crystal, **2H** \cdot H₂O. The agreement of the experimental pattern of **2** \cdot 0.2H₂O with the calculated pattern of **2** \cdot 0.2H₂O indicates that the partial loss of solvent in the bulk sample is not accompanied by a loss in crystallinity. Likewise, for **2H** \cdot 0.2H₂O. The agreement of the experimental pattern of **2** \cdot 0.2H₂O with the calculated pattern of **2** \cdot H₂O indicates that the partial loss of solvent in the bulk sample is not accompanied by a loss in crystallinity. Finally, for **5**(PF₆) \cdot 0.5THF, the theoretical pattern is calculated from the crystal structure of the freshly mounted crystal, **5**(PF₆) \cdot 0.5THF, the theoretical pattern is calculated from the crystal structure of the freshly mounted crystal, **5**(PF₆) \cdot THF, with the agreement of the patterns again indicating that the bulk and crystal are of the same phase.

Fig. S3 Neutral, monoanionic radical, and dianionic oxidation states of coordinated BIAN, with typical bond lengths of the C_1 – C_2 and imine C–N bonds displayed.^{2–4}

Fig. S4 π - π stacking interactions between acenaphthene moieties of molecules of **2** in **2**·0.1H₂O (left) and **3a** and **3b** in **3** (right). Hydrogen atoms omitted for clarity. Colour code: C (grey), N (blue), O (red), Co (aqua), Cl (dark green).

Table S1 Plane-plane distance, *d*, between pairs of acenapthene moieties in the structures of **1**, **2** \cdot 0.1H₂O, **4** and **5**(PF₆)·THF. Since *d* is undefined in the structure of **3**, an average point-plane distance is listed instead.

1 2 ·0.1H ₂ O	3	4	5 (PF ₆)·THF
---------------------------------	---	---	---------------------------------

Fig. S5 ATR-IR spectra of H-BIAN, **1–4**, and **5**(PF₆) \cdot 0.5THF. The region above 1550 cm⁻¹ is at an increased scale to highlight the characteristic C=N signals in this vicinity.

Fig. S6 UV-vis-NIR absorbance spectra of **2–4** and **5**⁺ in DCM. Equivalent plot for **1** presented in main text (Fig. 3).

Table S2 Peak maximum of ${}^{4}T_{1}(F) \rightarrow {}^{4}T_{2}$ transition of **1–4** in DCM solution.

	1	2	3	4	
λ_{\max} / nm	1022	1032	1040	1042	

Fig. S7 UV-vis absorbance spectra of 1–4 in DCM compared with that of free H-BIAN.

Fig. S8 Visible region spectra of **2**, **3**, **4**, and **5**⁺ in various solvents. Equivalent plot for **1** presented in main text (Fig. 5).

Fig. S9 Diffuse reflectance spectra (~1% in KBr) of **1–4**, normalised to the λ_2 transition. Right: diffuse reflectance spectra enlarged on the λ_2 transition.

Fig. S10 Comparison of the diffuse reflectance spectrum of $5(PF_6) \cdot 0.5THF$ (~1% in KBr) with the solution state spectrum in DCM.

Fig. S11 Comparison of the diffuse reflectance spectrum of 1 (~1% in KBr) with the solution state spectrum in toluene. Both spectra are normalised to the λ_2 transition.

Fig. S12 Diffuse reflectance UV-vis spectra of 2 and 2H·0.2H₂O, normalised to the highest absorbing peak.

Fig. S13 Cyclic voltammograms of **1**–**4** and **5**⁺ in MeCN (1.0 mM with 0.25 M Bu₄NPF₆) at a scan rate of 100 mV s⁻¹, and RDE voltammograms of **1**–**4** and **5**⁺ (50 mV s⁻¹ scan rate, 500 rpm rotation rate).

	Cyclic voltammetry data in V (ΔE in mV)			RDE voltammetry $E_{1/2}$ in V (i_L in μ A)			
	I, E _{pc}	II, E _{1/2} (∆E)	III, E _{1/2} (ΔE)	IV, E _{pa}	/ ª	<i>III</i>	IV
1	-1.380	-1.235 ^b	-1.480 ^b	-0.125	–1.261 (46.3)	–1.498 (27.3)	–0.035 (32.8)
2	-1.320 ^a	—	–1.533 (55)	-0.115	-1.270 (46.7)	–1.556 (31.5)	-0.186 (38.1)
3	-1.363 ^a	_	-1.601 (65)	-0.048	-1.401 (46.0)	-1.730 (22.4)	-0.124 (33.2)
4	-1.413	–1.511 (55)	–1.791 (55)	-0.228	-1.442 (56.4)	–1.799 (17.5)	-0.191 (41.8)
5⁺	-1.418	–1.528 ^b	–1.696 (145)	–0.438 ^c	–1.429 (61.3)	–1.785 (33.5)	–0.447 (36.3)

Table S3 Cyclic and RDE voltammetry data for compounds 1-4 and 5^+ in MeCN (1 mM analyte with 0.25 M Bu₄NPF₆).

^{*a*} E_{pc} or $E_{1/2}$ of the overlapped process combining *I* and *II*. ^{*b*} E_{pc} rather than $E_{1/2}$. ^{*c*} E_{pc} rather than E_{pa} .

Table S4 Parameters for the linear fits of the solvatochromic shifts of λ_1

λ_1	<i>C</i> ₁	C ₂	C ₃	<i>R</i> ²
1	2.236	0.246	0.116	0.531
2	2.234	0.373	0.062	0.987
3	2.292	0.199	0.109	0.800
4	2.291	0.153	0.106	0.421
λ_2	<i>C</i> ₁	<i>C</i> ₂	C ₃	<i>R</i> ²
λ ₂ 1	<i>c</i> ₁ 1.785	<i>c</i> ₂ 0.293	<i>c</i> ₃ 0.197	<i>R</i> ² 0.961
λ ₂ 1 2	c ₁ 1.785 1.773	c ₂ 0.293 0.358	c ₃ 0.197 0.204	R ² 0.961 0.986
λ ₂ 1 2 3	c ₁ 1.785 1.773 1.819	c ₂ 0.293 0.358 0.349	c3 0.197 0.204 0.201	R ² 0.961 0.986 0.986

and λ_2 to Equation 1 (see main text).

Fig. S14 Experimental excitation energies of the lower energy (top) and higher energy (bottom) visible excitations of **2** (left), **3** (centre), and **4** (right), plotted against the model presented in Eqn. 1 (see text). Fitted parameters presented in Table S3.

References

- 1 A. G. Starikov, A. A. Starikova and V. I. Minkin, *Russ. J. Gen. Chem.*, 2017, **87**, 98–106.
- 2 I. L. Fedushkin, A. A. Skatova, V. A. Chudakova and G. K. Fukin, *Angew. Chem., Int. Ed.*, 2003, **42**, 3294–3298.
- 3 I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, V. K. Cherkasov, S. Dechert and H. Schumann, *Russ. Chem. Bull.*, 2004, **53**, 2142–2147.
- 4 J. O. Liimatta, B. Löfgren, M. Miettinen, M. Ahlgren, M. Haukka and T. T. Pakkanen, *J. Polym. Sci. Pol. Chem.*, 2001, **39**, 1426–1434.