ESI

Neutral and cationic germanium(IV) fluoride complexes with phosphine coordination – synthesis, spectroscopy and structures

Rhys P. King, William Levason and Gillian Reid

School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; email: G.Reid@soton.ac.uk

Complex	[GeF ₄ (PMe ₃) ₂]	[GeF ₄ {CH ₃ C(CH ₂ PPh ₂) ₃ }] •CH ₂ Cl ₂	[GeF ₃ (PMe ₃) ₂ (OTf)]	[GeF ₂ (PMe ₃) ₂ (OTf) ₂]
Formula	$C_6H_{18}F_4GeP_2$	$C_{42}H_{41}Cl_2F_4GeP_3$	$C_7H_{18}F_6GeO_3P_2S$	$C_{24}H_{54}F_{24}Ge_{3}O_{18}P_{6}S_{6}$
М	300.73	858.15	430.84	1682.725
Crystal system	monoclinic	monoclinic	orthorhombic	triclinic
Space group (no.)	P2 ₁ /n (14)	P2 ₁ /n (14)	Pbca (61)	P-1 (2)
<i>a</i> /Å	6.1467(2)	13.9614(2)	11.3324(1)	9.3701(3)
b/Å	10.1678(4)	12.9040(2)	11.7241(1)	15.5931(6)
c/Å	9.5754(3)	21.6728(3)	23.5687(3)	21.5703(7)
α /°	90	90	90	93.050(3)
β/°	91.210(3)	96.8620(10)	90	94.382(3)
γ /°	90	90	90	91.974(3)
<i>U</i> /Å ³	598.31(4)	3876.56(10)	3131.39(6)	3135.60(19)
Ζ	2	4	8	2
μ (Mo-K _{α}) /mm ⁻¹	2.838	1.102	2.359	1.909
F(000)	305	1760	1734	1685
Total number refins	6990	48266	80977	57396
R _{int}	0.033	0.029	0.041	0.067
Unique reflns	1509	13630	5222	19099
No. of params, restraints	64, 0	470, 0	187, 0	849, 0
GOF	1.036	1.029	1.060	1.026
R_1 , w $R_2 [I > 2\sigma(I)]^b$	0.030, 0.069	0.039, 0.076	0.021, 0.049	0.071, 0.190
R_1 , w R_2 (all data)	0.037, 0.074	0.055, 0.081	0.027, 0.050	0.113, 0.217

Table S1: X-ray crystallographic data^a

^a Common items: T = 100 K; wavelength (Mo-K_a) = 0.71073 Å; θ (max) = 27.5°; ^b R₁ = Σ ||F_o|-|F_c||/ Σ |F_o|;

 $wR_2 = [\Sigma w (F_o^2 - F_c^2)_2 / \Sigma w F_o^4]^{1/2}$

Table S1: cont.

Complex	$[GeCl_2(AsEt_3)_2][OTf]_2$	[GeF ₂ (<i>o</i> -C ₆ H ₄ (PMe ₂) ₂)(OTf) ₂]	[GeF(<i>o</i> -C ₆ H ₄ (PMe ₂) ₂)(OTf) ₃] •0.3CH ₂ Cl ₂
Formula	$C_{14}H_{30}As_2Cl_2F_6GeO_6S_2$	$C_{12}H_{16}F_8GeO_6P_2S_2$	$C_{52.6}H_{65.2}CI_{1.2}F_{40}Ge_4O_{36}P_8S_{12}$
М	765.83	606.90	2998.82
Crystal system	triclinic	orthorhombic	monoclinic
Space group (no.)	P-1 (2)	P2 ₁ 2 ₁ 2 ₁ (19)	12 (5)
a /Å	9.6136(3)	8.49904(14)	17.7401(2)
b/Å	9.7490(4)	15.8315(3)	9.08810(10)
c/Å	15.2210(5)	16.3349(4)	33.6730(3)
α /°	104.887(3)	90	90
β/°	101.440(3)	90	100.2150(13)
γ /°	97.269(3)	90	90
U /ų	1327.35(8)	2197.90(8)	5342.84(10)
Ζ	2	4	2
μ (Mo-K _a) /mm ⁻¹	4.057	1.823	1.642
F(000)	760	1208	2978
Total number refins	22109	71065	72764
R _{int}	0.060	0.071	0.039
Unique reflns	8925	6832	15790
No. of params, restraints	304, 0	284, 0	707, 1
GOF	1.029	1.131	1.037
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.042, 0.081	0.061, 0.143	0.032, 0.066
R_1 , w R_2 (all data)	0.059, 0.088	0.069, 0.146	0.038, 0.068

Table S1: cont.

Compound	[GeF ₃ {Ph ₂ P(CH ₂) ₂ PPh ₂ }(OTf)]	$[GeF_2{Ph_2P(CH_2)_2PPh_2}(OTf)_2]$	[Ge{ <i>o</i> -C ₆ H ₄ (PMe ₂) ₂ }(OTf)]
	•CH ₂ Cl ₂	•CH ₂ Cl ₂	[OTf]•1/3CH ₂ Cl ₂
Formula	$C_{28}H_{26}CI_2F_6GeO_3P_2S$	$C_{29}H_{26}CI_2F_8GeO_6P_2S_2$	$C_{12.34}H_{16.66}CI_{0.67}F_6GeO_6P_2S_2$
М	761.98	892.05	597.210
Crystal system	monoclinic	orthorhombic	triclinic
Space group (no.)	Pn (7)	Pccn (56)	P-1 (2)
a /Å	10.22780(19)	11.5994(2)	8.5322(2)
b /Å	12.3841(2)	20.7200(4)	12.5345(4)
c /Å	12.2598(2)	14.7520(2)	12.6057(3)
α /°	90	90	64.833(3)
β/°	94.8064(16)	90	70.313(3)
γ/°	90	90	71.230(3)
<i>U</i> /ų	1547.39(5)	3545.49(10)	1123.35(7)
Ζ	2	4	2
μ(Mo-K _α) /mm ⁻¹	1.400	1.327	1.847
F(000)	768	1766	598
Total number reflns	21335	105333	30424
R _{int}	0.042	0.093	0.053
Unique reflns	8585	6229	7059
No. of params, restraints	388, 2	271, 0	318, 0
GOF	1.015	1.163	1.035
R_1 , w $R_2 [I > 2\sigma(I)]^b$	0.039, 0.065	0.048, 0.100	0.038, 0.084
R_1 , w R_2 (all data)	0.049, 0.069	0.062, 0.105	0.049, 0.088

Figure S1 (a) The structure of $[Ge\{o-C_6H_4(PMe_2)_2\}(OTf)][OTf]$ showing the atom labelling scheme and (b) the weakly associated dimer arrangement. The ellipsoids are drawn at the 50% probability level and H atoms and a CH_2Cl_2 solvent molecule are omitted for clarity. Selected bond lengths (Å) and angles (°) are: : Ge1–P1 = 2.4321(5), Ge1–P2 = 2.4580(6), Ge1–O1 = 2.0968(15), Ge1…O2 = 2.6438(17), P1–Ge1–P2 = 81.469(18).

Figures S2 – S14 NMR and IR spectroscopic data for the complexes reported in this work

```
Figure S2.1-2.4 [GeF<sub>4</sub>(^{i}Pr_{3}P)_{2}]
```

```
Figure S3.1- 3.7 [GeF<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>OTf]
```

Figure S4.1-4.4 [GeF₂(PMe₃)₂(OTf)₂]

Figure S5.1-5.4 [GeF(PMe₃)₂(OTf)₃]

Figure S6.1-6.4 [GeF₃(ⁱPr₃P)₂][OTf]

```
Figure S7.1-7.4 [GeF<sub>3</sub>{o-C<sub>6</sub>H<sub>4</sub>(PMe<sub>2</sub>)<sub>2</sub>}(OTf)]
```

Figure S8.1-8.4 [GeF₂{ $o-C_6H_4(PMe_2)_2$ }(OTf)₂]

```
Figure S9.1-9.4 [GeF{o-C_6H_4(PMe_2)_2}(OTf)_3]
```

```
Figure S10.1-10.4 [GeF<sub>4</sub>(k<sup>2</sup>-triphos)]
```

Figure S11.1-11.4 [GeF₄(tetraphos)]

```
Figure S12.1-12.4 [GeF<sub>3</sub>{Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>2</sub>PPh<sub>2</sub>}(OTf)]
```

```
Figure S13.1-13.4 [GeF<sub>2</sub>{Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>2</sub>PPh<sub>2</sub>}(OTf)<sub>2</sub>]
```

```
Figure S14 GeCl<sub>4</sub> + 2AsEt<sub>3</sub> + 2 TMSOTf.
```

Figure S2 [GeF₄(ⁱPr₃P)₂]

Figure S2.1 ¹H NMR spectrum in CD₂Cl₂, 298 K; *= [HPⁱPr₃] impurity, ^= CH₂Cl₂.

Figure S2.2 ${}^{19}F{}^{1}H$ NMR spectrum in CD₂Cl₂, 298 K; f = unidentified impurity.

Figure S2.3 $^{19}F{^1H}$ NMR spectrum in CD₂Cl₂, 183 K

Figure S2.4 $^{31}P\{^{1}H\}$ NMR spectrum in CD₂Cl₂, 298 K; *= [HPⁱPr₃]⁺ impurity

Figure S2.5 ${}^{31}P{}^{1}H$ NMR spectrum in CD₂Cl₂, 183 K.

Figure S3 [GeF₃(PMe₃)₂OTf]

Figure S3.1 ¹H NMR spectrum in CD_2CI_2 , 298 K; *= [HPMe₃]⁺.

Figure S3.2.2 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum in CD₂Cl₂, 183 K.

Figure S3.2.3 Expansion of the spectrum

Figure S3.2.4 Expansion of the spectrum

Figure S3.2.5 Expansion of the spectrum showing the doublet corresponding to the $[FPMe_3]^+$ by-product from reductive defluorination of the complex.

Figure S3.4.1 $^{31}P\{^{1}H\}$ NMR spectrum CD_2Cl_2, 298 K; *= [HPMe_3]^+.

Figure S3.4.2 ³¹P{¹H} NMR spectrum CD₂Cl₂, 183 K; *= [HPMe₃]⁺.

Figure S3.5 Stacked plot variable temperature ${}^{19}\mathsf{F}\{{}^{1}\mathsf{H}\}$ NMR spectra.

Figure S3.6 Stacked plot variable temperature ${}^{\rm 31}{\rm P}\{{}^{\rm 1}{\rm H}\}$ NMR spectra.

Figure S3.7: IR (Nujol/cm⁻¹)

Figure S4.1.1¹H NMR spectrum CD₂Cl₂, 298 K; *= unidentified impurity, ^= CH₂Cl₂.

Figure S4.1.2 ¹H NMR spectrum CD₂Cl₂, 233 K.

Figure S4.2.1 $^{19}F{^1H}$ NMR spectrum CD₂Cl₂, 298 K.

-40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 Chemical Shift (ppm)

Figure S4.2.2 $^{19}F\{^{1}H\}$ NMR spectrum CD₂Cl₂, 233 K.

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 Chemical Shift (ppm)

Figure S4.3.1 ${}^{31}P{}^{1}H$ NMR spectrum CD₂Cl₂ 298 K; *= [HPMe₃]⁺

Figure S4.3.2 ${}^{31}P{}^{1}H$ NMR spectrum CD₂Cl₂ 233 K; *= [HPMe₃]⁺.

Figure S4.4 IR (Nujol/cm⁻¹):

Figure S5 [GeF(PMe₃)₂(OTf)₃]

Figure S5.1 ¹H NMR spectrum CD_2Cl_2 298 K; *= [HPMe₃]⁺, ^= CH_2Cl_2

Figure S5.2 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum CD $_2\text{Cl}_2$ 298 K.

-70 -75 -80 -85 -90 -95 -100 -105 -110 Chemical Shift (ppm)

Figure S5.3 $^{31}P\{^{1}H\}$ NMR spectrum CD₂Cl₂ 298 K.

4000 3500 3000 2500 2000 1500 1000 Wavenumber (cm-1)

Figure S6 [GeF₃(ⁱPr₃P)₂][OTf]

Figure S6.1 ¹H NMR spectrum CD₂Cl₂, 298 K; *= CH₂Cl₂

Figure S6.2 $^{19}F{^1H}$ NMR spectrum CD₂Cl₂. 298 K.

Figure S6.3 ${}^{31}P{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K; *= [HPⁱPr₃]⁺

Figure S6.3.2 ${}^{31}P{}^{1}H$ spectrum CD₂Cl₂, 183 K; *= [HPⁱPr₃]⁺

Figure S7 [GeF₃{o-C₆H₄(PMe₂)₂}(OTf)]

Figure S7.1 ¹H NMR spectrum CD₂Cl₂, 298 K; *= impurity/decomposition; ^= CH₂Cl₂

Figure S7.2.1 ${}^{19}F{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K.

Figure S7.2.2 ¹⁹F{¹H} NMR spectrum (183 K)

Figure S7.2.3 Expansion of the spectrum (*= $[GeF_4{O-C_6H_4(PMe_2)_2}]$ impurity)

Figure S7.3.1 ³¹P{¹H} NMR spectrum CD₂Cl₂, 298 K; [£]= unidentified impurities

Figure S7.3.2 ³¹P{¹H} NMR spectrum CD₂Cl₂, 183 K; *= [GeF₄{*o*-C₆H₄(PMe₂)₂}]

Figure S7.3.3 Expansion of the spectrum

Figure S8 [GeF₂{o-C₆H₄(PMe₂)₂}(OTf)₂]

Figure S8.1 ¹H NMR CD₂Cl₂, 298 K; *= unidentified impurity/decomposition, ^= CH₂Cl₂

Figure S8.2.1 ${}^{19}F{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K.

Figure S8.2.2 Expansion of the spectrum

Figure S8.2.3 ¹⁹F{¹H} NMR spectrum (*trans* triflate isomer [%], possibly one triflate *trans* P one *trans* F isomer[£], [GeF₃{o-C₆H₄(PMe₂)₂}(OTf)] impurity^{*}

Figure S8.2.4 Expansion of the spectrum

Figure S8.3.1 $^{31}P\{^{1}H\}$ NMR spectrum CD $_{2}CI_{2}$ 298 K; $^{\&}$ = unidentified impurities

Figure S8.4 IR (Nujol/cm⁻¹)

Figure S9 [GeF{o-C₆H₄(PMe₂)₂}(OTf)₃]

Figure S9.1 ¹H NMR spectrum CD_2Cl_2 , 298 K; *= CH_2Cl_2

Figure S9.2.1 ${}^{19}F{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K.

Figure S9.2.2 Expansion of the spectrum

Figure S9.3 ${}^{31}P{}^{1}H$ NMR spectrum CD₂Cl₂ 298 K; *= unidentified impurities/decomposition

Figure S10 [GeF₄{ κ^2 -CH₃C(CH₂PPh₂)₃}]

Figure S10.1.1 ¹H NMR spectrum CD₂Cl₂, 298 K; *= uncoordinated triphosphine, ^= MeCN, "= CH₂Cl₂

Figure S10.1.2 ¹H NMR spectrum CD₂Cl₂ 183 K.

Figure S10.2.1 $^{19}F{^1H}$ NMR spectrum CD₂Cl₂ 298 K; *= GeF₄

Figure S10.2.2 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum CD $_2\text{Cl}_2,$ 243 K.

Figure S10.2.3 ${}^{19}F{}^{1}H$ NMR spectrum CD₂Cl₂, 183 K.

Figure S10.3.1 ${}^{31}P{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K.

Figure S11 [GeF₄{P(CH₂CH₂PPh₂)₃}]

Figure S11.1.1 ¹H NMR spectrum CD₂Cl₂, 298 K.

Figure S11.1.2 ¹H NMR spectrum CD_2CI_2 , 183 K; *= CH_2CI_2

Figure S11.2.1 ${}^{19}F{}^{1}H$ NMR spectrum CD₂Cl₂, 298 K.

Figure S11.2.2 ¹⁹F{¹H} NMR spectrum CD₂Cl₂, 213 K; *= [GeF₄{ κ^1 -P(CH₂CH₂PPh₂)₃}], ^= unidentified impurity

Figure S11.2.3 Expansion of the spectrum (*= $[GeF_4{\kappa^1-P(CH_2CH_2PPh_2)_3}])$

Figure S11.2.4 Expansion of the spectrum.

-107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 Chemical Shift (ppm)

Figure S11.2.5 simulated $^{19}\text{F}\{^1\text{H}\}$ spectrum

Figure S11.3.1 $^{31}P\{^{1}H\}$ NMR spectrum CD₂Cl₂, 298 K.

Figure S12 [GeF₃{Ph₂P(CH₂)₂PPh₂}(OTf)]

Figure S12.1.1 IR (Nujol/cm⁻¹)

Figure S13 [GeF₂{Ph₂P(CH₂)₂PPh₂}(OTf)₂]

Figure S13.1 IR (Nujol/cm⁻¹)

Figure S14 GeCl₄ + 2AsEt₃ + 2 TMSOTf.

Figure S14.1 ¹H NMR spectrum in CD₂Cl₂ (mixture of products)

