"The cation-dependent structural, magnetic and optical properties in a family of

hypophosphite hybrid perovskites"

by Mirosław Mączka et al.

e-mail: m.maczka@intibs.pl

Table S1. Experimental details.

For all structures: monoclinic, $P2_1/n$, Z = 4. Experiments were carried out at 295 K with Mo K α radiation using a Xcalibur, Atlas. Absorption was corrected for by multi-scan methods, *CrysAlis PRO* 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Refinement was on 157 parameters. H atoms were treated by a mixture of independent and constrained refinement.

	[Pyr]Mn(H ₂ POO) ₃	[EtA]Mn(H ₂ POO) ₃			
Crystal data					
Chemical formula	$C_4H_{16}MnNO_6P_3$	$C_2H_{14}MnNO_7P_3$			
$M_{ m r}$	322.03	311.99			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.7325 (3), 9.1882 (3), 13.4223 (4)	9.4250 (4), 8.8692 (3), 13.4809 (6)			
β (°)	91.018 (3)	93.142 (4)			
$V(Å^3)$	1200.09 (6)	1125.20 (8)			
μ (mm ⁻¹)	1.51	1.61			
Crystal size (mm)	$0.21\times0.13\times0.06$	$0.18 \times 0.14 \times 0.05$			
Data collection					
T_{\min}, T_{\max}	0.960, 1.000	0.953, 1.000			
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15018, 2973, 2595	12768, 2774, 2303			
$R_{\rm int}$	0.022	0.026			
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.688	0.694			
Refinement					
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.025, 0.063, 1.05	0.028, 0.069, 1.05			
No. of reflections	2973	2774			
No. of restraints	0	6			
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.31, -0.47	0.42, -0.32			

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *SHELXT* 2018/2 (Sheldrick, 2018), *SHELXT* 2014/5 (Sheldrick, 2014), *SHELXL2018*/3 (Sheldrick, 2018).

[Pyr]Mn(H ₂ POO) ₃						
Mn1—O5	2.1621 (12)	P1—O6	1.4894 (13)			
Mn1—O5 ⁱ	2.1621 (12)	P1—O1	1.5001 (12)			
Mn1—O4	2.1866 (12)	P2—O4	1.4899 (13)			
Mn1—O4 ⁱ	2.1866 (12)	P2—O3	1.4930 (13)			
Mn1—O1 ⁱⁱ	2.1977 (11)	P3—O5	1.4728 (13)			
Mn1—O1 ⁱⁱⁱ	2.1977 (11)	Р3—О2	1.4943 (13)			
Mn2—O6 ^{iv}	2.1615 (12)	N1—C1	1.500 (2)			
Mn2—O6	2.1615 (12)	N1—C2	1.505 (2)			
Mn2—O3 ^{iv}	2.1718 (11)	C1—C3	1.510 (3)			
Mn2—O3	2.1718 (11)	C2—C4	1.507 (3)			
Mn2—O2 ^v	2.2118 (12)	C3—C4	1.520 (3)			
Mn2—O2 ^{vi}	2.2118 (12)					
		·				
O5—Mn1—O5 ⁱ	180.0	O6—Mn2—O2 ^v	87.52 (6)			
O5—Mn1—O4	89.30 (5)	O3 ^{iv} —Mn2—O2 ^v	90.93 (5)			
O5 ⁱ —Mn1—O4	90.70 (5)	O3—Mn2—O2 ^v	89.07 (5)			
O5—Mn1—O4 ⁱ	90.70 (5)	O6 ^{iv} —Mn2—O2 ^{vi}	87.52 (6)			
O5 ⁱ —Mn1—O4 ⁱ	89.30 (5)	O6—Mn2—O2 ^{vi}	92.48 (6)			
O4—Mn1—O4 ⁱ	180.0	O3 ^{iv} —Mn2—O2 ^{vi}	89.07 (5)			
O5—Mn1—O1 ⁱⁱ	90.85 (5)	O3—Mn2—O2 ^{vi}	90.93 (5)			
O5 ⁱ —Mn1—O1 ⁱⁱ	89.15 (5)	O2 ^v —Mn2—O2 ^{vi}	180.0			
O4—Mn1—O1 ⁱⁱ	91.32 (5)	O6—P1—O1	115.18 (7)			
O4 ⁱ —Mn1—O1 ⁱⁱ	88.68 (5)	O4—P2—O3	118.33 (8)			
O5—Mn1—O1 ⁱⁱⁱ	89.15 (5)	O5—P3—O2	118.46 (8)			
O5 ⁱ —Mn1—O1 ⁱⁱⁱ	90.85 (5)	P1—O1—Mn1 ^{vii}	129.87 (7)			
O4—Mn1—O1 ⁱⁱⁱ	88.68 (5)	P3—O2—Mn2 ^{viii}	134.53 (8)			
O4 ⁱ —Mn1—O1 ⁱⁱⁱ	91.32 (5)	P2—O3—Mn2	137.03 (8)			
O1 ⁱⁱ —Mn1—O1 ⁱⁱⁱ	180.0	P2—O4—Mn1	132.54 (8)			
O6 ^{iv} —Mn2—O6	180.0	P3—O5—Mn1	166.25 (10)			
O6 ^{iv} —Mn2—O3 ^{iv}	90.22 (5)	P1—O6—Mn2	133.97 (8)			
O6—Mn2—O3 ^{iv}	89.78 (5)	C1—N1—C2	108.22 (13)			
O6 ^{iv} —Mn2—O3	89.78 (5)	N1—C1—C3	103.77 (14)			
O6—Mn2—O3	90.22 (5)	N1—C2—C4	105.00 (15)			
O3 ^{iv} —Mn2—O3	180.0	C1—C3—C4	103.10 (16)			
O6 ^{iv} —Mn2—O2 ^v	92.48 (6)	C2—C4—C3	103.11 (16)			

Table S2. Selected geometric parameters (Å, °).

[EtA]Mn(H ₂ POO) ₃							
Mn1—O1 ^{iv}	2.1798 (13)	Mn2—O5 ⁱ	2.1512 (15)				
Mn1—O1	2.1798 (13)	P1	1.5027 (14)				
Mn1—O2 ^{iv}	2.1889 (13)	P1—O3	1.5035 (14)				
Mn1—O2	2.1888 (13)	P3—O5	1.4777 (16)				
Mn1—O6 ^{ix}	2.1881 (14)	P3—O6	1.5011 (15)				
Mn1—O6 ^x	2.1881 (14)	P21—O2	1.4857 (17)				
Mn2—O3 ^{xi}	2.2043 (12)	P21—O4	1.4710 (18)				
Mn2—O3 ^v	2.2043 (12)	O1A—C1	1.419 (3)				
Mn2—O4 ⁱ	2.1565 (14)	N1—C2	1.481 (3)				
Mn2—O4	2.1565 (14)	C2—C1	1.505 (3)				
Mn2—O5	2.1511 (15)						
	•	•					
Ol ^{iv} —Mn1—O1	180.0	O5 ⁱ —Mn2—O3 ^{xi}	88.50 (6)				
O1 ^{iv} —Mn1—O2 ^{iv}	94.65 (6)	O5 ⁱ —Mn2—O3 ^v	91.50 (6)				
O1—Mn1—O2 ^{iv}	85.35 (6)	O5—Mn2—O3 ^{xi}	91.50 (6)				
O1 ^{iv} —Mn1—O2	85.35 (6)	O5—Mn2—O4 ⁱ	86.38 (6)				
O1—Mn1—O2	94.65 (6)	O5 ⁱ —Mn2—O4	86.38 (6)				
O1 ^{iv} —Mn1—O6 ^{ix}	89.36 (5)	O5—Mn2—O4	93.62 (6)				
O1 ^{iv} —Mn1—O6 ^x	90.64 (5)	O5 ⁱ —Mn2—O4 ⁱ	93.62 (6)				
O1—Mn1—O6 ^x	89.36 (5)	O5—Mn2—O5 ⁱ	180.00 (8)				
O1—Mn1—O6 ^{ix}	90.64 (5)	O1—P1—O3	116.28 (8)				
O2—Mn1—O2 ^{iv}	180.0	O5—P3—O6	115.51 (9)				
O6 ^x —Mn1—O2 ^{iv}	90.55 (6)	O4—P22—O2	123.3 (5)				
O6 ^{ix} —Mn1—O2	90.54 (6)	P1—O1—Mn1	125.62 (8)				
O6 ^{ix} —Mn1—O2 ^{iv}	89.45 (6)	P21—O2—Mn1	139.05 (12)				
O6 ^x —Mn1—O2	89.46 (6)	P22—O2—Mn1	147.1 (3)				
O6 ^{ix} —Mn1—O6 ^x	180.0	P1—O3—Mn2 ^{xii}	119.96 (7)				
O3v—Mn2—O3 ^{xi}	180.0	P21—O4—Mn2	146.63 (14)				
O4 ⁱ —Mn2—O3 ^{xi}	91.76 (5)	P22—O4—Mn2	164.8 (4)				
O4—Mn2—O3 ^{xi}	88.24 (5)	P3—O5—Mn2	135.75 (10)				
O4 ⁱ —Mn2—O3 ^v	88.24 (5)	P3—O6—Mn1 ^{xiii}	133.17 (9)				
O4—Mn2—O3 ^v	91.76 (5)	01A—C1—C2	112.77 (18)				
O4 ⁱ —Mn2—O4	180.0	N1-C2-C1	112.82 (17)				
O5—Mn2—O3 ^v	88.50 (6)						

Symmetry code(s): (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) *x*+1/2, -*y*+3/2, *z*-1/2; (iv) -*x*, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+2, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*+1/2, *y*+1/2, -*z*+3/2; (viii) *x*+1, *y*, *z*; (ix) *x*-1/2, -*y*+3/2, *z*+1/2; (x) -*x*+1/2, *y*+1/2, -*z*+1/2; (xi) *x*, *y*-1, *z*; (xii) *x*, *y*+1, *z*; (xiii) -*x*+1/2, *y*-1/2, -*z*+1/2.

D—H···A	<i>D</i> —Н (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	D—H···A (°)			
[Pyr]Mn(H ₂ POO) ₃							
N1—H1…O1	0.89	1.93	2.8069 (19)	166.9			
$N1$ — $H2$ ···O 2^{i}	0.89	2.10	2.8665 (19)	144.3			
[EtA]Mn(H ₂ POO) ₃							
01A—H1A…06	0.74 (2)	2.03 (2)	2.766 (2)	174 (3)			
N1—H1C····O3 ⁱⁱ	0.89	1.95	2.828 (2)	167.1			
N1—H1D…O1 ⁱⁱⁱ	0.89	2.11	2.942 (2)	156.1			
N1—H1D····O2 ^{iv}	0.89	2.54	3.123 (2)	123.9			
N1—H1E…O1A ^v	0.89	2.12	2.999 (2)	169.2			

 Table S3. Selected hydrogen-bond parameters.

Symmetry code(s): (i) *x*-1/2, -*y*+3/2, *z*+1/2; (ii) *x*+1/2, -*y*+3/2, *z*-1/2; (iii) -*x*+1/2, *y*-3/2, -*z*+1/2; (iv) *x*+1/2, -*y*+1/2, *z*-1/2; (v) -*x*+3/2, *y*-1/2, -*z*+1/2.

Table S4. Comparison of distortion factors (δ , σ , Δ), Mn-Mn and Mn-O distances, unit cell volumes per formula unit (V/Z), tolerance factors (TF), Mn-O-P angles, Neel temperatures (T_N) and PL band positions for all manganese hypophosphite simple perovskites at room temperature (except of triazolium analogue for which magnetic and optical properties are not known). For [GUA]Mn(H₂POO)₃, data correspond to triclinic phase.

Cation	TF	V/Z	δ	$\sigma(\text{deg.}^2)$	$\Delta(\text{\AA})$	Mn […] Mn (Å)	Mn-O	Mn-O-P (°)	T _N	PL
(ionic size		(Å ³)	(%)		10-5	(average)	(A) average	(average)	(K)	(nm)
in pm)						(average)		(average)		
EA (252)	0.96	251.4	10.6	2.2	0.00	6 25 6 80 (6 51)	2 104	124 04 142 22	2.4	656
ГА (235)	0.80	231.4	10.0	5.5	0.09	0.55-0.89 (0.51)	2.194	(128.00)	2.4	030
								(138.09)		
IM (258)	0.87	283.0	1.35	9.1	7.3	6.25-6.79 (6.61)	2.181	128.99-156.3	5.0	646
				14.5	7 1		2 172	(135.59)		
				14.3	/.1		2.175			
MHy (264)	0.88	269.4	0.44	8.7	3.0	6.38-6.65 (6.48)	2.1760	127.37-156.35	6.5	686
								(138.23)		
DMA	0.00	206.0	0.17	4.1	2.1		0.171	120 01 152 5	2.4	(())
DMA (272)	0.90	296.0	0.17	4.1	3.1	0.03-0./1 (0.0/)	2.1/1	130.81-153.5	3.4	668
(272)				8.9	7.5		2.165	(139.25)		
				0.1	20		2 1 6 2			
				9.1	2.9		2.102			
GUA (278)	0.91	280.4	0.5	2.3	32.0	6.52-6.60 (6.56)	2.188	126.93-141.23	6.5	?
								(132.40)		
D (220)	1.01	200.0	0.19	1.1	1.6		2 1 9 2	120.97.166.25	()	(77
Pyr (320)	1.01	300.0	0.18	1.1	4.0	0.09-0.71 (0.70)	2.182	129.87-100.25	0.0	0//
				2.6	9.9		2.182	(139.03)		
$E_{\pm \Lambda}$ (244)	1.06	291.2	0.20	67	12.1		2 171	110.06.164.90	7.0	680
EtA (344)	1.00	201.5	0.39	0.7	12.1	6.47-6.74 (6.56)	2.1/1	(129.60)	/.0	009
				8.1	0.4		2.186	(138.09)		

Figure S1. Experimental XRD patterns of the studied compounds together with the calculated ones based on the RT crystal structures.

Figure S2. Atom numbering scheme and H-bonds in Pyr (left) and EtA (right) Mnhypophosphites.

Figure S3. (a) Temperature dependence of inverse DC magnetic susceptibility χ^{-1} (left axis) and a product χT (right axis) of [DMA]Mn(H₂POO)₃ measured in constant magnetic field H; thick solid lines are a fit of the Curie-Weiss law to the experimental data (for details see the text). (b) LT magnetization M divided by magnetic field H measured in the ZFC and FC regimes (bright and dark symbols, respectively); the arrow marks the Néel temperature T_N. (c) Magnetization M (expressed as a magnetic moment per formula unit) as a function of increasing and decreasing field H (bright and dark symbols, respectively); the solid line shows linear behavior of M(H) in low fields.

Figure S4. (a) $\chi^{-1}(T)$ (left axis) and $\chi T(T)$ (right axis) of [IM]Mn(H₂POO)₃; thick solid lines are the Curie-Weiss fit (for details see the text). (b) MH⁻¹(T) with the ordering temperature T_N marked by an arrow, measured in the ZFC and FC regimes (bright and dark symbols, respectively). (c,d) M measured as a function of increasing and decreasing field (bright and dark symbols, respectively) and plotted in two different field ranges; the solid lines show linear part of M(H).

Figure S5. Room temperature absorption spectra of the investigated hypophosphite compounds with assigned Mn^{2+} absorption bands. The inset shows the energy band gap values (E_g) of the investigated compounds.

Figure S6. The energy band gap of $[DMA]Mn(H_2POO)_3$ (a) $[IM]Mn(H_2POO)_3$ (b), $[EtA]Mn(H_2POO)_3$ (c), and $[Pyr]Mn(H_2POO)_3$ (d) determined using Kubelka-Munk relation.

Figure S7. Changes of the PL integrated intensity of the investigated compounds with increasing temperature (a) and the energy activation (E_a) of thermal quenching (b).