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1.Materials and methods.

All reagents were commercially available and used as supplied without further
purification. Solvents were either employed as purchased or dried according to
procedures described in the literature. Compounds a3! and H? was prepared according
to published procedures. NMR spectra were recorded with a Bruker Avance DMX 600
spectrophotometer. High-resolution mass spectrometry experiments were performed
with a Waters UPLC H-Class QDA instrument. Scanning electron microscopy (SEM)
investigations were carried out on a JEOL 6390LV instrument. UV—vis spectra were
taken on a SHIMADZU UV-2450 spectrophotometer. The viscosity was recorded with
a SYP-256B viscometer. Dynamic light scattering was carried out on a Malvern

Zatasizer Nano ZS instrument at room temperature.
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2.Synthesis of compound 1 and model guest compound G.
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Scheme S1. Synthetic route to 1.

Compound a (0.48 g, 0.50 mmol) and 1-methylimidazole (0.21 g, 2.5 mmol) were
added to acetonitrile (50.0 mL). The solution was refluxed 24 h. The solvent was

evaporated and the residue was purified by chromatography on silica gel

(dichloromethane/methanol, v/v 10:1) to give 1 as a white solid. Mp: 149—151 C The
'H NMR spectrum of 1 is shown in Fig. S1. 'H NMR (600 MHz, CD;CN, 298 K) ¢
(ppm): 0 8.40 (s, 1H), 7.31 (s, 1H), 7.24 (s, 1H) > 6.91-6.88 (m, 10H), 3.89—3.87 (m,
3H), 3.81 (s, 2H), 3.73-3.68 (m, 39H), 1.83—1.79 (m, 2H), 1.63—1.61 (m, 2H),
1.55-1.52 (s, 2H), 1.39-1.36 (s, 10H), 1.20 (s, 2H). The '*C NMR spectrum of 1 is
shown in Figure S2. 3C NMR (125 MHz, CDCls, 298 K) J (ppm): 151.09, 151.07,
151.05, 151.03, 151.01, 150.43, 136.90, 129.49, 129.47, 129.41, 129.39, 129.36,
129.34, 129.33, 124.36, 122.97, 115.02, 114.08, 114.05, 114.00, 113.92, 113.89, 69.24,
56.21, 5618, 56.15, 50.11, 44.62, 36.74, 30.08, 30.03, 29.80, 29.48, 26.89, 26.71.
HRESIMS is shown in Fig. S3: m/z 957.52545 [M — Br]".
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Figure S1. 'H NMR spectrum (600 MHz, CD;CN, 298 K) of 1.
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Figure S2. 3C NMR spectrum (125 MHz, CD;CN, 298 K) of 1.
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Figure S3. High-resolution mass electrospray ionization mass spectrum of 1. Main peak: m/z
957.52545 [M — Br]* (100%).
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Scheme S2. Synthetic route to compound G.

I-methylimidazole (1.65 g, 20.0 mmol) and 1-bromododecane (15.0 g, 60.0 mmol)
were added to acetonitrile (100.0 mL). The solution was refluxed 12 h. The solvent was
evaporated and the residue was purified by chromatography on silica gel
(dichloromethane/methanol, v/v 20:1) to give G as a white solid. Mp: 45—47 °C. The
'H NMR spectrum of G is shown in Fig. S4. 'H NMR (600 MHz, CDCl;, 298 K) o
(ppm): 6 10.36 (s, 1H), 7.51 (s, 1H), 7.36—7.35 (m, 1H) > 4.30—4.28 (m, 2H), 4.11 (s,
3H), 2.05 (s, 1H), 1.91-1.86 (m, 2H), 1.30—1.21 (m, 19H), 0.86—0.83 (m, 3H). The 13C
NMR spectrum of G is shown in Figure S5. 3C NMR (125 MHz, CDCl;, 298 K) 6
(ppm): 0 138.28, 123.01, 121.45,77.25,77.04, 76.83, 50.36, 36.87, 29.49, 26.28, 22.70,
14.15, 1.04. HRESIMS is shown in Fig. S6: m/z 251.24799 [M — Br]".
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Figure S4. "H NMR spectrum (600 MHz, CDCl;, 298 K) of G.
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Figure S5. 3C NMR spectrum (125 MHz, CDCl;, 298 K) of G.
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Figure §6. High-resolution mass electrospray ionization mass spectrum of G. Main peak: m/z
251.24799 [M — Br]* (100%).

S7



3. Study on the complexation between H and model guest G
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Figure S7. Partial "H NMR spectra (600 MHz, CDCl;, 298 K) of (a) H (5.00 mM), (b) H (5.00
mM) and G (5.00 mM), (¢) G (5.00 mM).
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Figure §8. Partial 2D NOESY spectra (CDCI;, 293 K, 600 MHz) of the mixture of H (20.0
mM) and G (20.0 mM).
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To determine the stoichiometry and association constant between H and G, 'H
NMR titration was done with solutions which had a constant concentration of G (1.00
mM) and different concentrations of H. By a non-linear curve-fitting method, the
association constant between the H and G was calculated. By a mole ratio plot, a 1:1
stoichiometry was obtained for this system.

The non-linear curve-fitting was based on the equation:

A0 = (46./[H]o) (0.5[G]o + 0.5([H]o + 1/K,) — (0.5([G]o*> + [G]o(1/K, — [H]o)) + (1/K,
+[H]o)*) 0.5)) (Eq. S1)

wherein 40 is the chemical shift change of H, on G at [G],, 40, is the chemical
shift change of H. when the guest is completely complexed, [G]y is the fixed initial

concentration of the guest, and [H]y is the varying concentration of H.
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Figure S9. Partial '"H NMR spectra (600 MHz, CDCl;, 298 K) of G at a concentration of 1.00

mM with different concentrations of H: (a) 0.00 mM; (b) 0.10 mM; (c) 0.20 mM; (d) 0.57 mM;
(e) 0.83 mM; (f) 1.15 mM; (g) 1.45 mM; (h) 2.13 mM; (i) 4.01 mM; (§) 5.17 mM.
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Figure S10. Mole ratio plot for the complexation between H and G, indicating a 1:1
stoichiometry.
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Figure S11. The chemical shift changes of H, on G upon addition of H. The red solid
line was obtained from the non-linear curve-fitting using Eq. S1.
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4. Partial DOSY NMR spectra of 1 at different concentrations.
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Figure S12. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 2.50 mM.
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Figure S13. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 40.0 mM.
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Figure S14. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 70.0 mM.
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Figure S15. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 100 mM.
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Figure S§16. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 150 mM.
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Figure S17. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of 1 at 200 mM.
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5. Log—log plot of specific viscosity of monomer 1 versus the monomer concentration
at 298 K.
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Figure S18. Log—log plot of specific viscosity of monomer 1 versus the monomer

concentration at 298 K.
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6. Partial DOSY NMR spectra of SPN.
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Figure $19. DOSY NMR spectrum (600 MHz, CDCl;, 298 K) of SPN at 40.0 mM of 1.
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7. DLS experiments of LSP and SPN.
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Fig. $20 DLS results of (a) LSP (10.0 mM of 1); (b) SPN (10.0 mM of 1) in chloroform.
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8. Partial '"H NMR spectra and DOSY NMR spectra of 1 + TBAL
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Fig. S21 (a) Partial '"H NMR spectra (600 MHz, CDCls, 298 K) of (I) 1 at a concentration of
40.0 mM; (IT) after addition 1.00 eq. TBAI to I; (b) DOSY NMR spectrum (600 MHz, CDCl;,

298 K) of 1 + TBAI (40.0 mM).
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9. Removal of dyes experiments

The efficiency of dye removal (in %) by the adsorbent SPN was determined by
the following equationS3:

Co—C¢

% dye removal efficiency = €0 x100% (Eq. S2)

where ¢y (mg L") was the initial concentration of dyes solution, ¢, (mg L™!) was the
residual concentration of dyes solution in the presence of gel at any sample time # (min).

Meanwhile, the amount of dyes bound to the adsorbent were determined by the
following equationS*:

Co—C¢

g = CA (Eq.

S3)

where ¢, (mg g™!) was the amount of dyes adsorbed per gram of adsorbent at time #
(min), ¢o (mg L") and ¢, (mg L") were the initial and residual concentrations of dyes
in the stock solutions and filtrates, c, (g L") was the concentration of adsorbent.

The adsorption kinetic process was described by pseudo-second-order adsorption
model, shown as the following equation®:

t ot 1

- = 2
Qe — e 4 kade (Eq. S4)

where ¢; (mg g!) and ¢. (mg g ') were the amount of dyes adsorbed at time ¢ (min)
and at equilibrium time, k5 (g mg! min~') was the apparent adsorption rate constant.
The Langmuir adsorption isotherm was shown in the following equation®®:

c 1+ kc
de  Kkdmay

where ¢. (mg g™!) was the mass amount of the pollutant adsorbed at equilibrium, ¢ .x
(mg g™!) was the maximum adsorption amount of the adsorbent at equilibrium, ¢ (mg
L) was the residual pollutant concentration at equilibrium, and & (L mg™!) was the
equilibrium constant.
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Figure §22. Concentration-dependent UV—Vis spectrum changes of methyl orange,
insert: Standard curve measured by UV—vis of methyl orange.
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Figure S23. Concentration-dependent UV—Vis spectrum changes of methyl violet,
insert: Standard curve measured by UV—vis of methyl violet.
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Figure S24. Concentration-dependent UV—Vis spectrum changes of rhodamine B,
insert: Standard curve measured by UV—vis of rhodamine B.
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Figure S25. Concentration-dependent UV—Vis spectrum changes of methylene blue,
insert: Standard curve measured by UV—vis of methylene blue.
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Figure S26. Time-dependent removal efficiency of (a) methyl orange, (b) methyl violet,

(c) rhodamine B, (d) methylene blue.
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Figure S27. The Langmuir isotherm of (a) methyl orange, (b) methyl violet, (¢) rhodamine B,

(d) methylene blue adsorption by SPN.
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10. Stability text of SPN
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Figure §28. '"H NMR spectra (600 MHz, CDCl;, 298 K) of (a) SPN and (b) SPN in water for
24 hours and was dried in vacuum.

S22



References

S1.Z. Zhang, C. Han, G. Yu and F. Huang, Chem. Sci., 2012, 3, 3026-3031.
S2. T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem.
Soc., 2008, 130, 5022-5023.

S3. A. Meng, J. Xing, Z. Li and Q. Li, ACS Appl. Mater. Interfaces, 2015, 7,
27449-27457.

S4. W. Zhang, Y. Zhang and Y. Liu, Chem Asian J, 2021, 16, 2321-2327.
S5.Y. S. Ho and G. McKay, Process Biochem., 1999, 34, 451-465.

S6. M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, Adv. Colloid Interface Sci.,
2014, 209, 172-184.

S23



