Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Enhancing the Stability of $CsPbX_3$ (X = Br, I) Through Combination with Y-

zeolites for WLED Application

Dayu Huang,^{a,c,#} Yue Liu,^{a,b,#} Qiuyun Ouyang,^{c,*} Hongzhou Lian^{a,*} and Jun Lin^{a,b,d*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun 130022, P. R. China

^bUniversity of Science and Technology of China, Hefei 230026, P. R. China

^cKey Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and College of Physics and

Opotoelectronic Engineering, Harbin Engineering University, Harbin 150001, China

^dSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China.

[#]Dayu Huang and Yue Liu contributed equally

Table of Contents

Figure S1. Photographs showing the transformation process of Cs_4PbCl_6 NCs to $CsPbBr_3$ and $CsPbI_3$ NCs.

Figure S2. (a-b) HRTEM of a single CsPbBr₃ and CsPbI₃ NCs. (c-d) Size distribution histogram of CsPbBr₃ and CsPbI₃ NCs.

Figure S3. XRD pattern of prepared NCs with ZnBr₂ solution in excess.

Figure S4. PL emission spectra of CsPbBr₃ NCs through ZnBr₂ and SnBr₂ solution triggered transformed.

Figure S5. Photographs showing the stability of CsPbBr₃ NCs obtained through (a) 100 μ L and (b) 1500 μ L ZnBr₂ and SnBr₂ solution triggered transformed.

Figure S6. Remnant PL of CsPbBr₃ NCs and CsPbBr₃@zeolite in different time.

Table S1. Formation energy of Cs₄PbCl₆, CsPbBr₃, CsPbI₃, CsCl, ZnCl₂, ZnBr₂, and ZnI₂.

 Table S2. Comparison of specific surface area and pore size of mesoporous silicon

 before and after loading samples.

 Table S3. Summary of emitting materials and PeLED Performances.

Video S1. More intuitive transformation process.

Computation methods

Spin-polarized GGA calculations have been performed based on density functional theory (DFT), as implemented in the Vienna ab initio Simulation Package (VASP). The electrons of $Cs(5s^25p^66s^1)$, $Pb(5p^{10}6s^26p^2)$, $Zn(3d^{10}4s^2)$, $Br(4p^54s^2)$, $I(5p^55s^2)$, and $Cl(3s^23p^5)$ were treated as valence electrons. The geometry optimizations were performed until the total energies and the forces on the atoms converged to 10^{-4} eV and $0.02 \text{ eV } \text{Å}^{-1}$, respectively. A 2 × 2 × 2 k (Cs_4PbCl_6), $11 \times 11 \times 11$ k (CsCl), $11 \times 11 \times 11$ k ($CsPbBr_3$), $11 \times 11 \times 11$ k ($CsPbI_3$), $2 \times 2 \times 2$ k ($ZnBr_2$), $6 \times 6 \times 6$ k ($ZnCl_2$), $2 \times 2 \times 2$ k (ZnI_2), -point grid was used, and the cutoff energy for the plane wave basis was set to 400 eV. Effects of spin-orbit coupling were included throughout the calculations.

The Perdew-Burke-Ernzerhof (PBE) function within the generalized gradient approximation was used for the exchange-correlation energy. The formation energy of the reaction process is expressed as,

$$E_{f} = 2E(Cs_{4}PbCl_{6}) - 2E(CsPbBr_{3}) - 6E(CsCl) - 3E(ZnCl_{2}) + 3E(ZnBr_{2})$$
(1)

$$E_{f} = 2E(Cs_{4}PbCl_{6}) - 2E(CsPbI_{3}) - 6E(CsCl) - 3E(ZnCl_{2}) + 3E(ZnI_{2})$$
(2)

where, $E(Cs_4PbCl_6)$, $E(CsPbBr_3)$, $E(CsPbI_3)$, E(CsCl), $E(ZnCl_2)$, $E(ZnBr_2)$ and $E(ZnI_2)$ are the energy of pristine Cs_4PbCl_6 , $CsPbBr_3$, $CsPbI_3$, CsCl, $ZnCl_2$, $ZnBr_2$, and ZnI_2 .

1	0, , ,	5, 5,	, 2, 2,
Structures	E _f (eV)	PBE (eV)	Number of units
Cs ₄ PbCl ₆	-37.66562	-225.99372	6
CsCl	-6.5438814	-6.5438814	1
CsPbBr ₃	-15.898891	-15.898891	1
CsPbI ₃	-14.065143	-14.065143	1
ZnBr ₂	-7.1238653	-227.96369	32
ZnCl ₂	-8.2212935	-32.885174	4
ZnI ₂	-5.9942619	-191.81638	32

Table 1| Formation energy of Cs₄PbCl₆, CsPbBr₃, CsPbI₃, CsCl, ZnCl₂, ZnBr₂, and ZnI₂

Figure S1. Photographs showing the transformation process of Cs_4PbCl_6 NCs to $CsPbBr_3$ and $CsPbI_3$ NCs.

Figure S2. (a-b) HRTEM of a single $CsPbBr_3$ and $CsPbI_3$ NCs. (c-d) Size distribution histogram of $CsPbBr_3$ and $CsPbI_3$ NCs.

Figure S3. XRD pattern of prepared NCs with $ZnBr_2$ solution in excess.

Figure S4. PL emission spectra of CsPbBr₃ NCs through ZnBr₂ and SnBr₂ solution triggered transformed.

Figure S5. Photographs showing the stability of CsPbBr₃ NCs obtained through (a) 100 μ L and (b) 1500 μ L ZnBr₂ and SnBr₂ solution triggered transformed.

Figure S6. Remnant PL of CsPbBr₃ NCs and CsPbBr₃@zeolite in different time.

Table S2. Comparison of specific surface area and pore size of mesoporous silicon before and after loading samples.

sample	BET surface (m^2/g)	Pore volume (cm ³ /g)	Pore size (nm)
Zeolite-Y	768.8	1.3	5.6
CsPbBr ₃ @zeolite	456.7	0.9	5.8

Emitting materials	PLQY (%)	FWHM (nm)	Luminous efficiency (lm/W)
CsPbBr ₃	92	19	147.82
CsPbBr ₃ @zeolite	83	20	107.17
CsPbI ₃	50	36	130.56
CsPbI ₃ @zeolite	46	37	103.24

Table S3. Summary of emitting materials and PeLED Performances.

Video S1. More intuitive transformation process.