**Supporting Information** 

## Facet-engineering of NH<sub>2</sub>-UiO-66 with Enhanced

## **Photocatalytic Hydrogen Production Performance**

Xiaofan Shi,<sup>a</sup> Xin Lian,<sup>a</sup> Di Yang,<sup>a</sup> Xiaojuan Hu,<sup>c</sup> Jijie Zhang<sup>\*a</sup> and Xian-He Bu<sup>a,b</sup>

<sup>a</sup>School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China. <sup>b</sup>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. <sup>c</sup>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany.

Corresponding author: zhangjijie@nankai.edu.cn

| Morphology           | c(ZrCl <sub>4</sub> )<br>(mmol/L) | c(NH <sub>2</sub> -BDC)<br>(mmol/L) | Equivalent of<br>HF acid | Reaction<br>time (h) |
|----------------------|-----------------------------------|-------------------------------------|--------------------------|----------------------|
| Cube                 | 3                                 | 3                                   | 2                        | 24                   |
| Tetra-<br>decahedron | 6                                 | 6                                   | 4                        | 12                   |
| Octahedron           | 36                                | 36                                  | 4                        | 12                   |

**Table S1.** Reactants' concentration and reaction time of different NH2-UiO-66samples.

## Concentration (mM)



**Figure S1.** Morphology of NH<sub>2</sub>-UiO-66 in different reactants' concentration and specific equivalent of hydrofluoric acid.



Figure S2. (a) TEM and (b-f) mapping images of C-UiO.



Figure S3. (a) TEM and (b-f) mapping images of T-UiO.



Figure S4. (a) TEM and (b-f) mapping images of O-UiO.

**Table S2.** Specific binding energy location of samples.

| Samples                          | $Zr3d_{3/2}$ | Zr3d <sub>5/2</sub> |
|----------------------------------|--------------|---------------------|
| C-UiO                            | 185.58 eV    | 183.21 eV           |
| T-UiO                            | 185.53 eV    | 183.16 eV           |
| O-UiO                            | 185.62 eV    | 183.25 eV           |
| NH <sub>2</sub> -UiO-66 with HAc | 185.38 eV    | 183.02 eV           |

**Table S3.** Atomic concentration (%) of C1s, N1s, O1s, F1s, and Zr3d in C-UiO, T-UiO,and O-UiO determined by XPS.

|       | С     | Ν    | 0     | F    | Zr   |
|-------|-------|------|-------|------|------|
| C-UiO | 54.60 | 5.04 | 28.18 | 5.11 | 7.07 |
| T-UiO | 58.39 | 4.80 | 25.43 | 4.84 | 6.54 |
| O-UiO | 54.52 | 5.48 | 27.81 | 5.28 | 6.91 |

**Table S4.** Parameters of equivalent circuit for the impedance data of C-UiO, T-UiOand O-UiO.

| Samples | $R_s(\Omega)$ | $R_t(k\Omega)$       |
|---------|---------------|----------------------|
| C-UiO   | 30.23         | $3.50 \times 10^{3}$ |
| T-UiO   | 29.26         | $1.24 \times 10^{3}$ |
| O-UiO   | 31.86         | $2.67 \times 10^{3}$ |

Table S5. Fitting results of the time-resolved PL spectra of C-UiO, T-UiO and O-UiO.

| Samples | A <sub>1</sub> (%) | $\tau_1(ns)$ | A <sub>2</sub> (%) | $\tau_2(ns)$ | τ <sub>ave</sub> (ns) |
|---------|--------------------|--------------|--------------------|--------------|-----------------------|
| C-UiO   | 0.79               | 0.71         | 0.21               | 4.71         | 3.15                  |
| T-UiO   | 0.79               | 0.59         | 0.21               | 6.71         | 5.20                  |
| O-UiO   | 0.87               | 0.56         | 0.13               | 6.05         | 3.99                  |

**Table S6.** Fitting results of the TA kinetics of C-UiO, T-UiO and O-UiO.

| Samples | A <sub>1</sub> (%) | $\tau_1(ps)$ | A <sub>2</sub> (%) | $\tau_2(ps)$   | τ <sub>ave</sub> (ps) |
|---------|--------------------|--------------|--------------------|----------------|-----------------------|
| C-UiO   | 42.4               | $78\pm8$     | 57.6               | $1406 \pm 137$ | $1341 \pm 255$        |
| T-UiO   | 48.0               | 23±4         | 52.0               | 610±26         | 590±29                |
| O-UiO   | 49.2               | 19±4         | 50.8               | $875 \pm 76$   | $858 \pm 80$          |



Figure S5. Photocatalytic recycling tests of different NH<sub>2</sub>-UiO-66 samples.



Figure S6. SEM images of (a) C-UiO, (b) T-UiO, (c) O-UiO samples after photocatalytic hydrogen reactions.



Figure S7. XRD patterns of C-UiO samples before and after photocatalytic hydrogen





Figure S8. XRD patterns of T-UiO samples before and after photocatalytic hydrogen reactions.



Figure S9. XRD patterns of O-UiO samples before and after photocatalytic hydrogen reactions.



Figure S10. FT-IR spectra of C-UiO samples before and after photocatalytic hydrogen reactions.



Figure S11. FT-IR spectra of T-UiO samples before and after photocatalytic hydrogen reactions.



Figure S12. FT-IR spectra of O-UiO samples before and after photocatalytic hydrogen reactions.



Figure S13. Mott-Schottky plots of different NH<sub>2</sub>-UiO-66 samples.



Figure S14. Tauc-plots of different NH<sub>2</sub>-UiO-66 samples.

Table S7. Band structure data of C-UiO, T-UiO, and O-UiO.

| Samples | HOMO (eV) | LUMO (eV) | Band gap (eV) |
|---------|-----------|-----------|---------------|
| C-UiO   | 2.77      | -0.10     | 2.87          |
| T-UiO   | 2.80      | -0.05     | 2.85          |
| O-UiO   | 2.68      | -0.15     | 2.83          |



Figure S15. Coordination mode and structure of (100) and (111) facets.

To study the surface energy and DOS of these models, first-principles calculations were carried out using density functional theory (DFT) with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Vienna Ab-Initio Simulation Package (VASP).<sup>1, 2</sup> The valence electronic states were expanded based on plane waves with the core-valence interaction represented using the projector augmented plane wave (PAW) approach and a cutoff of 450 eV.<sup>3</sup> All atoms in the models were relaxed until the residual force was less than 0.05eV/Å.

The original bulk structure of  $NH_2$ -UiO-66 was obtained from the Cambridge Crystallographic Data Centre (CCDC). The surface model of (100) and (111) facets

were cleaved from the optimized bulk  $NH_2$ -UiO-66 model with a vacuum thickness of 25 Å to suppress the interaction between adjacent slabs. The Brillouin zone integration was sampled with 1x1x1 K-point meshes for geometry optimization. The surface energy of each facet ( $\gamma_{hkl}$ ) was calculated by the following formula:<sup>4</sup>

$$\gamma_{hkl} = \frac{E_{slab} - E_{bulk} - nE_{mol}}{A}$$

The  $E_{slab}$  is the total energy of the relaxed surface model. The  $E_{bulk}$  is the total energy of atoms that corresponding to the slab model in the original bulk system. The  $E_{mol}$  is the energy of small molecules we insert to maintain the chemometric ratio. A is the surface area of cleaved slab.



Figure S16. Density of states of (100) and (111) facets.

## REFERENCE

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 2. Kresse and Furthmuller, *Phys. Rev. B: Condens. Matter*, 1996, **54**, 11169-11186.
- 3. Blochl, Phys. Rev. B: Condens. Matter, 1994, **50**, 17953-17979.
- 4. F. Guo, J.-H. Guo, P. Wang, Y.-S. Kang, Y. Liu, J. Zhao and W.-Y. Sun, *Chem. Sci.*, 2019, **10**, 4834-4838.