Precise control of the degree and regioselectivity of functionalization in nitro- and amino-functionalized

di(trispyrazolylborato)iron(II) spin crossover

complexes

Chenyang Ma, Claire Besson*

Department of Chemistry, The George Washington University, 800 22nd Street NW,

Washington, D.C. 20052, United States

SUPPLEMENTARY INFORMATION

Molecular solid-sate structures: pp. 2-6 Crystallographic parameters: pp. 7-9 Crystal packing diagrams: pp. 10-19 PXRD spectra: pp. 20-23 IR spectra: pp. 24-28 UV-vis spectra: pp. 29-33 TGA: pp. 34-37 SQUID magnetization data and fits: pp. 38-42

Solid-state structure of all compounds

Figure 1. a). Solid-state structure of TBA[3-NO₂Tp] showing only the lowest occupancy component of the disorder. b) Asymmetric unit of ligand TBA [3-NO₂Tp] with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of TBA[4-NO₂Tp]

Figure 2. Solid-state structure of TBA[4-NO₂Tp]. Thermal ellipsoids are shown at 50% probability. Color code: B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of [(3-NO₂Tp)₂Fe]

a.)

Figure 3. a). Solid-state structure of [(3-NO₂Tp)₂Fe], showing only the highest occupancy component of the disorder. b) Asymmetric unit of complex [(3-NO₂Tp)₂Fe], with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of [(Tp)Fe(3-NO₂Tp)] · (C₆H₆)_{0.5}

Figure 4. Solid-state structure of $[(Tp)Fe(3-NO_2Tp)] \cdot (C_6H_6)_{0.5}$. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of [(Tp)Fe(4-NO₂Tp)]

Figure 5. Solid-state structure of [(Tp)Fe(4-NO₂Tp)]. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of [(Tp)Fe(5-NO₂Tp)][·] (CH₃CN)_{0.5} a.) b.)

Figure 6. a). Solid-state structure of $[(Tp)Fe(5-NO_2Tp)]$, showing only one component of the disorder. The co-crystallizing acetonitrile moiety is omitted for clarity. b) Solid-state structure of complex $[(Tp)Fe(5-NO_2Tp)] \cdot (CH_3CN)_{0.5}$ with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

Solid-state structure of [((3-NO₂)₂Tp)₂Fe]

Figure 7. a). Solid-state structure of [((3-NO₂)₂Tp)₂Fe], showing only the highest occupancy component of the disorder. b) Asymmetric unit of complex [((3-NO₂)₂Tp)₂Fe], with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red. Hydrogen atoms are omitted for clarity.

0.378

Solid-state structure of [((3-NO₂)₂Tp)₂Fe]·CH₂Cl₂

Figure 8. a). Solid-state structure of [((3-NO₂)₂Tp)₂Fe]·CH₂Cl₂, showing only the highest occupancy component of the disorder. b). Asymmetric unit of complex [((3-NO₂)₂Tp)₂Fe]·CH₂Cl₂, with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue; O, red; Cl, green. Hydrogen atoms are omitted for clarity.

Solid-state structure of [(3-NH₂Tp)₂Fe]

Figure 9. a). Solid-state structure of $[(3-NH_2Tp)_2Fe]$, showing only the highest occupancy component of the disorder. b) Asymmetric unit of complex $[(3-NH_2Tp)_2Fe]$ with indications of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue. Hydrogen atoms are omitted for clarity.

Solid-state structure of [((3-NH₂)₂Tp)₂Fe]

Figure 10. a). Solid-state structure of $[((3-NH_2)_2Tp)_2Fe]$, ommiting the disorder. b) Asymmetric unit of complex $[((3-NH_2)_2Tp)_2Fe]$ with an indication of non-unit site occupancy. Thermal ellipsoids are shown at 50% probability. Color code: Fe, brown; B, yellow; C, grey; N, blue. Hydrogen atoms are omitted for clarity.

X-ray crystallography

Table 1. Single-crystal X-ray diffraction analysis details of ligands

	TBA[3-NO ₂ Tp]	TBA[4-NO ₂ Tp]
CCDC number	2016677	2016678
Formula	C ₂₅ H ₄₅ BN ₈ O ₂	C ₂₅ H ₄₅ BN ₈ O ₂
Fw / g mol ⁻¹	500.50	500.50
Crystal size /	0.31, 0.25, 0.12	0.71, 0.42, 0.24
mm ³		
crystal system	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$
a / Å	12.034(2)	9.9736(15)
b / Å	15.744(3)	14.258(2)
c / Å	14.929(3)	20.471(3)
α	90	90
β	95.216(4)	94.132(2)
γ	90	90
V / Å ³	2816.9(8)	2903.5(8)
Z	4	4
pcalc / g cm ⁻³	1.178	1.145
μ / mm^{-1}	0.077	0.075
λ/Å	Μο Κα (0.71073)	Μο Κα (0.71073)
T / K	298(2)	100(2)
2θmax	51.6°	54.3°
reflections	17918	20405
collected		
independent	4872	5101
reflections		
parameters	358	330
R(int)	0.0461	0.0538
R1 $[I > 2\sigma(I)]$	0.0805	0.0449
wR2 (all data)	0.2305	0.1197
Largest peak	0.540, -0.456	0.242, -0.263
and hole / e Å ⁻³		

$[(3-NO_2Tp)_2Fe] [(Tp)Fe(3-NO_2Tp)] [(Tp)Fe(4-NO_2Tp)] [(Tp)Fe(5-NO_2Tp)] [(Tp)Fe(5-NO_2Tp)] [((3-NO_2)_2Tp)_2Fe]$						
	$[(3-NO_2Tp)_2Fe]$	$[(Tp)Fe(3-NO_2Tp)]$	$[(Tp)Fe(4-NO_2Tp)]$	$[(Tp)Fe(5-NO_2Tp)]$	$[(Tp)Fe(5-NO_2Tp)]$	$[((3-NO_2)_2Tp)_2Fe]$

		$(C_6H_6)_{0.5}$		·(CH ₃ CN) _{0.5}	·(CH ₃ CN) _{0.5}	
CCDC number	2017277	2017280	2018041	2024174	2019476	2109964
Formula	C ₁₈ H ₁₈ B ₂ FeN ₁₄ O ₄	C ₂₁ H ₂₂ B ₂ FeN ₁₃ O ₂	C ₁₈ H ₁₉ B ₂ FeN ₁₃ O ₂	C ₃₈ H ₄₁ B ₄ Fe ₂ N ₂₇ O ₄	C ₁₉ H _{20.5} B ₂ FeN _{13.5} O ₂	C ₁₈ H ₁₆ B ₂ FeN ₁₆ O ₈
Fw / g mol ⁻¹	571.93	565.98	526.93	1094.92	547.46	661.98
Crystal size /	0.13, 0.82, 0.58	0.15, 0.91, 0.17	0.066, 0.17, 0.291	0.12, 0.34, 0.15	0.16, 0.42, 0.07	0.20. 0.12, 0.07
mm ³						
crystal system	triclinic	monoclinic	monoclinic	monoclinic	monoclinic	orthorhombic
space group	<i>P</i> -1	$P2_{1}/c$	$P2_{1}/c$	C2/c	C2/c	Стсе
a / Å	7.4826(19)	7.6174(5)	7.5560(19)	15.695(3)	15.9020(13)	13.482(3)
b / Å	8.807(2)	16.9017(11)	18.433(5)	17.914(4)	18.1587(17)	13.205(3)
c / Å	9.755(3)	19.3438(13)	17.133(4)	17.381(4)	17.5671(17)	15.403(4)
α	95.359(3)	90	90	90	90	90
β	103.741(3)	99.313(1)	99.585(3)	97.507(5)	97.715(3)	90
γ	101.365(3)	90	90	90	90	90
V / Å ³	605.5(3)	2457.6(3)	2353.0(10)	4845.0(18)	5026.8(8)	2742.2(11)
Z	1	4	4	4	8	4
pcalc / g cm ⁻³	1.568	1.530	1.488	1.501	1.447	1.603
μ / mm ⁻¹	0.681	0.664	0.687	0.671	0.647	0.626
λ / Å	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)
T / K	100(2)	100(2)	100(2)	100(2)	298(2)	298(2)
$2\theta_{max}$	54.5°	51.5°	52.9°	43.0°	66.3°	51.3°
reflections	10828	20406	14164	25167	73381	9924
collected						
independent	2719	4702	4807	2444	5967	1311
reflections						
parameters	224	550	325	378	381	136
R(int)	0.0425	0.0301	0.0458	0.0970	0.1675	0.0377
R1 $[I > 2\sigma(I)]$	0.0342	0.0173	0.0688	0.0542	0.0869	0.0953
wR2 (all data)	0.0796	0.0321	0.1891	0.1275	0.2026	0.1852
Largest peak and hole / e $Å^{-3}$	0.358, -0.276	0.269, -0.205	1.694, -1.690	0.358, -0.303	0.289, -0.302	0.766, -0.501

	$[((3-NO_2)_2Tp)_2Fe]$ ·CH ₂ Cl ₂	[(3-NH ₂ Tp) ₂ Fe]	$[(3-NH_2Tp)_2Fe]$	$[((3-NH_2)_2Tp)_2Fe]$	$[((3-NH_2)_2Tp)_2Fe]$
CCDC number	2017281	2018042	2018043	2017278	2017279
Formula	C ₁₈ H ₁₆ B ₂ FeN ₁₆ O ₈ , (CH ₂ Cl ₂) 0.91	C ₁₈ H ₂₂ B ₂ FeN ₁₄	C ₁₈ H ₂₂ B ₂ FeN ₁₄	C ₁₈ H ₂₄ B ₂ FeN ₁₆	C ₁₈ H ₂₄ B ₂ FeN ₁₆
Fw / g mol ⁻¹	739.22	511.48	511.96	542.00	542.00
Crystal size / mm ³	0.43, 0.28, 0.36	0.062, 0.21,	0.062, 0.21, 0.32	0.21, 0.51, 0.25	0.21, 0.51, 0.25
		0.32			
crystal system	monoclinic	triclinic	triclinic	trigonal	trigonal
space group	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	R-3	R-3
a / Å	15.7878(7)	9.2821(12)	9.439(3)	9.093(2)	9.174(2)
b / Å	9.5340(5)	10.1947(13)	10.374(3)	9.093(2)	9.174(2)
c / Å	19.5945(10)	13.4103(17)	13.566(4)	25.043(2)	26.393(2)
α	90	85.767(3)	85.264(4)	90	90
β	99.2920(10)	80.397(3)	80.233(4)	90	90
γ	90	63.053(3)	63.663(4)	120	120
V / Å ³	2910.7(2)	1115.4(2)	1173.2(6)	1793.3(2)	1923.8(2)
Z	4	2	2	3	3
$\rho calc / g cm^{-3}$	1.687	1.523	1.449	1.506	1.404
μ / mm ⁻¹	0.778	0.717	0.682	0.676	0.630
$\lambda / Å$	Μο Κα (0.71073)	Μο Κα	Μο Κα (0.71073)	Μο Κα (0.71073)	Μο Κα (0.71073)
		(0.71073)			
T / K	100(2)	100(2)	298 (2)	100(2)	298 (2)
20max	54.3°	52.8°	50.9°	72.7°	61.1°
reflections collected	45979	29668	10705	13794	11006
independent reflections	6423	4572	4347	8416	1306
parameters	498	356	357	62	63
R(int)	0.0497	0.0429	0.0242	0.0372	0.0232
R1 $[I > 2\sigma(I)]$	0.0316	0.0705	0.0587	0.0374	0.0318
wR2 (all data)	0.0788	0.1697	0.1448	0.0991	0.0942
Largest peak and hole $\overline{/e \text{ Å}^{-3}}$	0.698, -0.588	0.478, -0.489	0.332, -0.260	0.926, -0.891	0.257, -0.232

b.)

Figure 11. Non-classical hydrogen bonds are observed between 1.) oxygen positions of disordered nitro group and TBA⁺ hydrogen site with donor…acceptor distances of 2.236-2.831 Å. 2.) nitrogen position of pyrazole and TBA⁺ hydrogen site with donor…acceptor distances of 2.717-2.851 Å. 3.) oxygen positions of disordered nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.540 Å. 4.) nitrogen position of disordered nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.540 Å. 4.) nitrogen position of disordered nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.815 Å. a). Projection along [100]. b). Projection along [001].

Packing of TBA[4-NO₂Tp] in the crystal lattice. a.)

b.)

Figure 12. Non-classical hydrogen bonds are observed between 1.) oxygen positions of nitro group and TBA⁺ hydrogen site with donor...acceptor distances of 2.494-2.750 Å.2.) nitrogen position of pyrazole and TBA⁺ hydrogen site with donor...acceptor distances of 2.673-2.757 Å. 3.) oxygen positions of nitro group and pyrazole hydrogen site with donor...acceptor distances of 2.680 Å. a). Projection along [100]. b). Projection along [010].

Packing of [(3-NO₂Tp)₂Fe] in the crystal lattice.

a.)

Figure 13. Non-classical hydrogen bonds are observed between oxygen positions of nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.422-2.709 Å. a). Projection along [100]. b). Projection along [010].

Packing of $[(Tp)Fe(3-NO_2Tp)]$ · $(C_6H_6)_{0.5}$ in the crystal lattice. a.)

Figure 14. Non-classical hydrogen bonds are observed between 1.) oxygen positions of nitro group and benzene hydrogen site with donor…acceptor distances of 2.839 Å. 2.) oxygen positions of nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.501-2.663 Å. a). Projection along [100]. b). Projection along [010].

Packing of [(Tp)Fe(4-NO₂Tp)] in the crystal lattice.

a.)

b.)

Figure 15. Non-classical hydrogen bonds are observed between oxygen positions of nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.482-2.663 Å. a). Projection along [100]. b). Projection along [010].

Packing of [(Tp)Fe(5-NO₂Tp)] · (CH₃CN)_{0.5} in the crystal lattice. a.)

Figure 16. Non-classical hydrogen bonds are observed between 1). oxygen positions of nitro group and pyrazole hydrogen site with donor…acceptor distances of 2.426-2.752 Å. 2). nitrogen position of disordered acetonitrile and pyrazole hydrogen site with donor…acceptor distances of 2.690 Å. 3). nitrogen position of pyrazole and pyrazole hydrogen site with donor…acceptor distances of 2.866 Å. a). Projection along [100]. b). Projection along [010].

Packing of [((3-NO₂)₂Tp)₂Fe] in the crystal lattice.

Figure 17. Non-classical hydrogen bonds are observed between 1). oxygen positions of nitro group and pyrazole hydrogen site with donor macceptor distances of 2.486-2.964 Å. 2). nitrogen position of nitro group and pyrazole hydrogen site with donor ... acceptor distances of 2.852-2.893 Å. 3). nitrogen position of pyrazole and pyrazole hydrogen site with donor…acceptor distances of 2.904 Å. a). Projection along [100]. b). Projection along [010].

Packing of [((3-NO₂)₂Tp)₂Fe]·CH₂Cl₂ in the crystal lattice.

Figure 18. Non-classical hydrogen bonds are observed between 1.) chloride positions of dichloromethane and pyrazole hydrogen site with donor...acceptor distances of 3.046 Å. 2.) oxygen positions of nitro group and pyrazole hydrogen site with donor...acceptor distances of 2.392-2.723 Å. 3.) oxygen positions of nitro group and boron hydrogen site with donor...acceptor distances of 2.829 Å. 4.) oxygen positions of nitro group and dichloromethane hydrogen site with donor...acceptor distances of 2.639-2.733 Å. a). Projection along [010]. b). Projection along [001].

Packing of [(3-NH₂Tp)₂Fe] in the crystal lattice.

Figure 19. Non-classical hydrogen bonds are observed between 1). nitrogen positions of disordered amino group and pyrazole hydrogen site with donor…acceptor distances of 2.562-2.822 Å. 2). nitrogen position of pyrazole and amino hydrogen site with donor…acceptor distances of 2.250-2.879 Å. a). Projection along [100]. b). Projection along [001].

Packing of [((3-NH₂)₂Tp)₂Fe] in the crystal lattice.

b.)

Figure 20. Non-classical hydrogen bonds are observed between 1). nitrogen positions of disordered amino group and disordered amino hydrogen site with donor...acceptor distances of 2.607-2.859 Å. 2). nitrogen

position of pyrazole and amino hydrogen site with donor...acceptor distances of 2.540-2.661 Å. a). Projection along [100]. b). Projection along [001].

PXRD spectra:

[(3-NO₂Tp)₂Fe]

Figure 21. Powder X-ray diffraction patterns for $[(3-NO_2Tp)_2Fe]$ crystals. The room temperature experimental PXRD pattern is represented as blue curve. The diffraction pattern calculated from the single crystal structure at 100 K is represented in black.

[(Tp)Fe(3-NO₂Tp)] · (C₆H₆)_{0.5}

Figure 22. Powder X-ray diffraction patterns for $[(Tp)Fe(3-NO_2Tp)]$ (C₆H₆)_{0.5} crystals. The room temperature experimental PXRD pattern is represented as blue curve. The diffraction pattern calculated from the single crystal structure at 100 K is represented in black.

[(Tp)Fe(4-NO₂Tp)]

Figure 23. Powder X-ray diffraction patterns for [(Tp)Fe(4-NO₂Tp)] crystals. The room temperature experimental PXRD pattern is represented as blue curve. The diffraction pattern calculated from the single crystal structure at 100 K is represented in black.

[(Tp)Fe(5-NO₂Tp)]

Figure 24. Powder X-ray diffraction patterns for desolvated $[(Tp)Fe(5-NO_2Tp)]$ crystals. It differs from the diffraction pattern calculated from the single crystal structure at 100 K of $[(Tp)Fe(5-NO_2Tp)] \cdot (CH_3CN)_{0.5}$ (in black).

[((3-NO₂)₂Tp)₂Fe]

Figure 25. Powder X-ray diffraction pattern for de-solvated $[((3-NO_2)_2Tp)_2Fe] \cdot CH_2Cl_2$ crystals (blue). It differs from the diffraction pattern calculated from the single crystal structure at 100 K of $[((3-NO_2)_2Tp)_2Fe] \cdot CH_2Cl_2$ (in red), but fits the diffraction pattern for $[((3-NO_2)_2Tp)_2Fe]$ calculated from the crystal structure at 298 K is in black.

[(3-NH₂Tp)₂Fe]

Figure 26. Powder X-ray diffraction patterns for $[(3-NH_2Tp)_2Fe]$ crystals. The room temperature experimental PXRD pattern is represented as blue curve. The diffraction pattern calculated from the single crystal structure at 100 K is represented in black.

[((3-NH₂)₂Tp)₂Fe]

Figure 27. X-ray diffraction patterns for $[((3-NH_2)_2Tp)_2Fe]$ crystals. The room temperature experimental PXRD pattern is represented as blue curve. The diffraction pattern calculated from the single crystal structure at 100 K is represented in black.

IR spectra:

TBA[4-NO₂Tp]

TBA[3-NO₂Tp]

[(3-NO₂Tp)₂Fe]

[((3-NO₂)₂Tp)₂Fe]

[(3-NH₂Tp)₂Fe]

[((3-NH₂)₂Tp)₂Fe]

UV-vis TBA[3-NO₂Tp] in acetone

Figure 28. UV-VIS spectrum of TBA[3-NO₂Tp] in acetone.

TBA[(3-NO₂)₂Tp] in acetone

Figure 29. UV-VIS spectrum in TBA[(3-NO₂)₂Tp] in acetone.

Figure 30. UV-VIS spectrum of [(3-NO₂Tp)₂Fe] in toluene.

[(Tp)Fe(3-NO₂Tp)] in toluene

Figure 31. UV-VIS spectrum of $[(Tp)Fe(3-NO_2Tp)]$ in toluene. The absorption band maximum is located at 536 nm.

Figure 32. UV-VIS spectrum of [((3-NO₂)₂Tp)₂Fe] in DCM.

[(Tp)Fe(4-NO₂Tp)] in toluene

Figure 33. UV-VIS spectrum of $[(Tp)Fe(4-NO_2Tp)]$ in toluene. The absorption band maximum is located at 484 nm.

[(Tp)Fe(5-NO₂Tp)] in toluene

Figure 34. UV-VIS spectrum of [(Tp)Fe(5-NO₂Tp)] in Toluene. The absorption band maximum is located at 585 nm.

[(3-NH₂Tp)₂Fe] in DCM

Figure 35. UV-VIS spectrum of [(3-NH₂Tp)₂Fe] in toluene. The absorption band maximum is located at 565 nm.

[(3-NH₂)₂Tp)₂Fe] in DCM

Figure 36. UV-VIS spectrum of [(3-NH₂)₂Tp)₂Fe] in DCM.

Figure 37. TGA of [(3-NO₂Tp)₂Fe] in air

[(Tp)Fe(3-NO₂Tp)] .0.5 C₆H₆ in air

Figure 38. TGA of [(Tp)Fe(3-NO₂Tp)]·0.5 C₆H₆ in air

Figure 39. TGA of [((3-NO₂)₂Tp)₂Fe] in air

Figure 40. TGA of [(Tp)Fe(4-NO₂Tp)] in air

[(Tp)Fe(5-NO₂Tp)]·0.5 CH₃CN in air

Figure 41. TGA of [(Tp)Fe(5-NO₂Tp)]·0.5 CH₃CN in air

[(3-NH₂Tp)₂Fe] in air

Figure 42. TGA of [(3-NH₂Tp)₂Fe] in air

Figure 43. TGA of [((3-NH₂)₂Tp)₂Fe] in air

Figure 44. Temperature dependence of the molecular magnetic susceptibility of complexes $[(3-NO_2Tp)_2Fe]$ at 0.1 T.

[(Tp)Fe(3-NO₂Tp)]

Figure 45. Temperature dependence of the molecular magnetic susceptibility of $[(Tp)Fe(3-NO_2Tp)]\cdot(C_6H_6)_{0.5}(x)$ at 0.1 T with best fits based on the Schlichter-Drickamer model (black dash line).

SCO fit parameters	$T_{1/2} / \mathrm{K}$	$\Delta_{ m r} H / m kJ mol^{-1}$	$\Delta_{ m r}S$ / J mol ⁻¹ K ⁻¹	Γ / kJ mol ⁻¹
	249	13	54.7	2.9

[(Tp)Fe(4-NO₂Tp)]

Figure 46. Temperature dependence of the molecular magnetic susceptibility of $[(Tp)Fe(4-NO_2Tp)](\blacklozenge)$ at 0.1 T with best fits based on the Schlichter-Drickamer model (black dash line).

SCO fit parameters	$T_{1/2} / K$	$\Delta_{ m r} H / m kJ \ m mol^{-1}$	$\Delta_{ m r}S$ / J mol ⁻¹ K ⁻¹	Γ / kJ mol ⁻¹
	384	24.4	65	1.2

[(Tp)Fe(5-NO₂Tp)]

Figure 47. Temperature dependence of the molecular magnetic susceptibility of $[(Tp)Fe(5-NO_2Tp)](\bullet)$ at 0.1 T with best fits based on the Schlichter-Drickamer model (black dash line).

SCO fit parameters	$T_{1/2} / \mathrm{K}$	$\Delta_{ m r} H / m kJ \ m mol^{-1}$	$\Delta_{ m r}S$ / J mol $^{-1}$ K $^{-1}$	Γ / kJ mol ⁻¹
	252	17	65	0.1

[(3-NH₂Tp)₂Fe]

Figure 48. Temperature dependence of the molecular magnetic susceptibility of $[(3-NH_2Tp)_2Fe]$ (×) at 0.1 T with best fits based on the Schlichter-Drickamer model (black dash line).

<i>SCO fit parameters T</i> _{1/2} / K 316		$\Delta_{ m r} H / m kJ m mol^{-1}$	$\Delta_{ m r}S$ / J mol $^{-1}$ K $^{-1}$	Γ / kJ mol ⁻¹	
	316	18.5	59.7	1.0	

[((3-NO₂)₂Tp)₂Fe]

Figure 49. Temperature dependence of the molecular magnetic susceptibility of $[((3-NO_2)_2Tp)_2Fe]$ at 0.1 T.

[((3-NH₂)₂Tp)₂Fe]

Figure 50. Temperature dependence of the molecular magnetic susceptibility of $[((3-NH_2)_2Tp)_2Fe]$ (\blacklozenge) at 0.1 T with best fits based on the Schlichter-Drickamer model (black dash line).

SCO fit parameters	$T_{1/2} / \mathrm{K}$	$\Delta_{ m r} H / m kJ mol^{-1}$	$\Delta_{\rm r}S$ / J mol ⁻¹ K ⁻¹	Γ / kJ mol ⁻¹
	178	9.3	52	0

	$[(Tp)Fe(3-NO_2Tp)] \cdot (C_6H_6)_{0.5}$	[(Tp)Fe(4-NO ₂ Tp)]	[(Tp)Fe(5-NO ₂ Tp)]	[(3-NH ₂ Tp) ₂ Fe]	[((3-NH ₂) ₂ Tp) ₂ Fe]	[(4-NO ₂ Tp) ₂ Fe]	[(Tp)Fe((4-NO ₂) ₂ Tp)]	[((4-NO ₂) ₂ Tp) ₂ Fe]	[(4-NH ₂ Tp) ₂ Fe]
$\chi_M T_{max}$	3.46	3	3.42	3.62	3.15	3.3	3.3	3	3
$T_{1/2} / K$	249	384	252	316	178	394	401	456	388
$\Delta_{\rm r} H/$	13	24.4	17.0	18.5	9.3	26.0	29.0	34.0	19.0
kJ mol ⁻¹	(12.8, 13.2)	(23.7, 25.2)	(16.7,17.3)	(17.9, 19.1)	(9.2, 9.4)	(25.4, 26.6)	(25.0, 33.0)	(11.6, 56.4)	(10.1, 28.0)
$\Delta_r S / J$	54.7	65.0	65.0	59.7	52.0	65.9	72.3	74.5	50.0
mol ⁻¹	(53.9, 55.5)	(63, 67)	(63.9,66.1)	(57.9, 61.6)	(45.7, 46,4)	(64.7, 67.0)	(62.3, 81.8)	(26.3, 122.6)	(27.0, 73.0)
$\Gamma / \text{kJ mol}^{-}$	2.9	1.2	0	0	0	6.6	4.0	0.6	1.3
1	(2.8, 3.1)	(0.96, 1.48)	(0, 0.35)	(0, 0.26)	(0, 0.08)	(6.01, 7.57)	(0.59, 7.40)	(0, 6.50)	(0, 4.40)
Number of nearest neighbors in the crystal	9	8	6, 12 ^{<i>a</i>}	6, 12	6	8	8, 11	8	12, 14
Reference	This work	This work	This work	This work	This work	b	b	b	С

Slichter-Drickamer fitting parameters. Number between parentheses represent 95% confidence interval error bars.

a: Data given for [(Tp)Fe(5-NO₂Tp)]·(CH₃CN)_{0.5} b. Revised fit of the data from reference [1]. v. Reference [1].

1. Flototto, H.; Secker, T.; Kogerler, P.; Besson, C., Amine-Functionalized Spin Crossover Building Blocks. *Eur. J. Inorg. Chem.* **2019**, *2019* (43), 4621-4624.