Growth Behavior of Atomic Layer Deposition HfO₂

by Switching H₂O and O₃ Reactants

Byeong Guk Ko^{1a}, Chi Thang Nguyen^{1a}, Bonwook Gu¹, Abu Saad Ansari¹, Mohammad Rizwan Khan¹,

Kunwoo Park², Jungwon Park², Bonggeun Shong³, Han-Bo-Ram Lee^{1*}

¹Department of Materials Science and Engineering, Incheon National University, Incheon, Korea, 22012

²School of Chemical and Biological Engineering, Seoul National University, Korea, 08826

³Department of Chemical Engineering, Hongik University, Seoul, Korea, 04066

Supporting figures.

Figure S1. (a) Flow-chart of algorithm for simulation of multilayer HfO₂, (b) MC simulation of HfO₂ ALD process, (c) activation probability—simulated thickness graph, (d) activation energy (red points) of each reactant relative to H₂O compared to GPC trend (blue points).

The rate of the reactions with O_3 , H_2O , O_3 - H_2O , and H_2O - O_3 pulses was defined by multiplying the probability of TDMAH adsorption on the O- or OH-terminated sites by the oxidizing power of the reactants:

$$Rate \propto k_{O^-}^{TDMAH} * k_{TDMAH}^{O_3} = k_{O^3}^{O_3}$$
(1)

$$Rate \propto k_{OH-}^{TDMAH} * k_{TDMAH}^{H_2O} = k_{P}^{H_2O}$$
(2)

$$Rate \propto k_{0H-}^{TDMAH} * k_{TDMAH}^{03} = k_{03}^{0-H_20}$$
(3)

$$Rate \propto k_{0-}^{TDMAH} * k_{TDMAH}^{H_20} = k_{0-0}^{H_20-0}$$
(4)

Here, k_{0}^{TDMAH} is the probability of adsorption of TDMAH on the O-terminated site, k_{0}^{TDMAH} is the probability of adsorption of TDMAH on the OH-terminated site, k_{TDMAH}^{0} is the oxidizing power of the O₃ reactant on the adsorbed TDMAH, and $k_{TDMAH}^{H_2O}$ is the oxidizing power of H₂O on the adsorbed TDMAH surface.

The relationship between the reaction rate constant and the activation energy was developed by Arrhenius:

$$k^{reactant} = Ae^{-\frac{E^{reactant}}{RT}}$$
(5)

where $k^{reactant}$ is the reaction rate constant for each reactant system, *A* is the pre-exponential factor, $E^{reactant}_{a}$ is is the activation energy in each reactant system, *R* is the molar gas constant (8.314 J/mol K), and *T* is the temperature. Therefore, the activation energy was calculated using the Boltzmann distribution [1]:

$$\frac{k^{reactant}}{k^{H_2 0}} = \exp\left(\frac{E_a^{H_2 0} - E_a^{reactant}}{K_B T}\right)$$
(6)

The Boltzmann constant, K_B , is defined as 1.380649 × 10⁻²³ J/K. In this calculation, $E_a^{H_2^0}$ was set to 0 as the fixed value, and the relative activation energy for each reactant type was calculated as:

$$K_B T \ln\left(\frac{k^{reactant}}{k^{H_2 O}}\right) = E^{reactant}$$
⁽⁷⁾

Simulation of the reaction with different reaction rate constants showed a similar trend for the four reactant systems over ten HfO_2 ALD cycles. The variation of the relative activation energy was compared with the variation of the experimentally determined GPC. The reaction probability decreases exponentially with increasing activation energy, and the low GPC is due to the high activation energy [2,3].

Figure S2. Illustration of HfO₂ structure with oxygen vacancies and interstitial oxygen.

Figure S3. Content of (a) C and (b) N impurities in HfO₂ film, determined from XPS data.

Figure S4. XRR data for HfO₂ films formed by using each reactant process: (a) H₂O and H₂O-O₃, (b) O₃ and O₃-H₂O, (c) capacitance values of MOS capacitors using 18 nm ALD HfO₂ deposited at 275 °C.

Reference

[1] L. Huang and L. Wang, Accelerated Monte Carlo simulations with restricted Boltzmann machines, Phys. Rev. B, 2017, 95, 3, 1–6, DOI: 10.1103/PhysRevB.95.035105.

[2] S. Park, B. E. Park, H. Yoon, S. Lee, T. Nam and T. Cheon, et al., Comparative study on atomic layer deposition of HfO2: Via substitution of ligand structure with cyclopentadiene, J. Mater. Chem. C, 2020, 8, 1344–1352, DOI: 10.1039/c9tc05778a.

[3] S. Kinnunen, M. Lahtinen, K. Arstila and T. Sajavaara, Hydrogen and Deuterium Incorporation in ZnO Films Grown by Atomic Layer Deposition, Coatings, 2021, 11, 5, 542, DOI: 10.3390/coatings11050542.