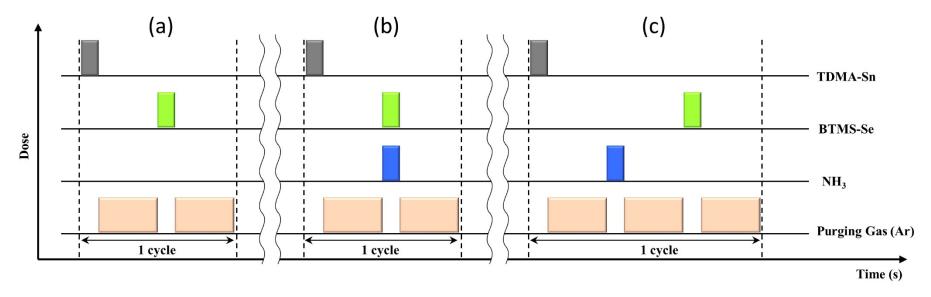
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021


Electronic Supplementary Information (ESI)

Atomic layer deposition of $SnSe_x$ thin films using $Sn(N(CH_3)_2)_4$ and $Se(Si(CH_3)_3)_2$ with NH_3 co-injection

Jeong Woo Jeon,^a Chanyoung Yoo, ^a Woohyun Kim, ^a Wonho Choi, ^a Byongwoo Park, ^a Yoon Kyeung Lee*^b and Cheol Seong Hwang*^a

^aDepartment of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea. E-mail: cheolsh@snu.ac.kr

^b Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea. E-mail: yoonklee@jbnu.ac.kr

Fig. S1 Various ALD gas injection sequences with NH₃ to analyze the chemical interactions between NH₃ and the precursors. (a) Typical ALD (b) Synchronized injection of NH₃ with BTMS-Se (c) Asynchronized injection of NH₃ with BTMS-Se.

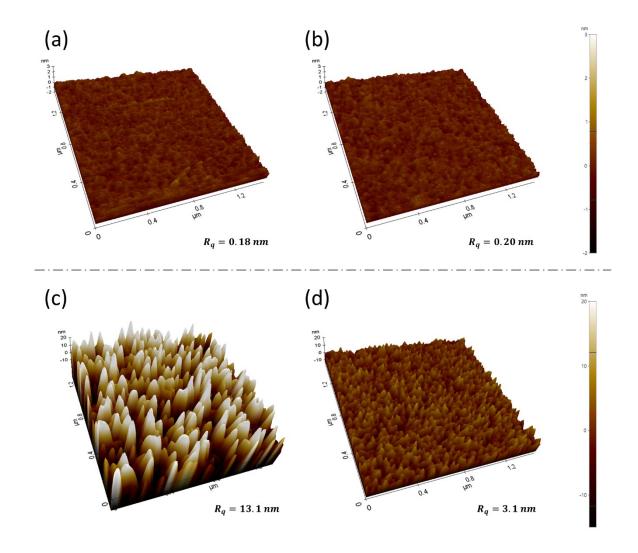


Fig. S2 AFM images of $SnSe_x$ films grown on SiO_2 substrate at deposition temperatures of (a) 110 °C, (b) 150 °C, (c) 170 °C, and (d) 170 °C with two-step process.

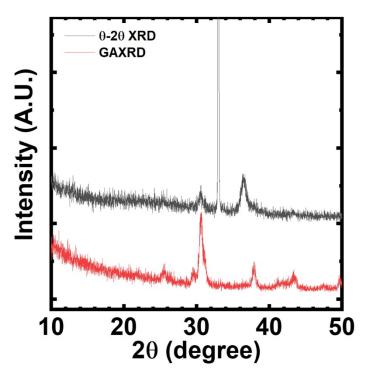


Fig. S3 θ -2 θ and GAXRD results of SnSe film on TiN substrates with the two-step process