Supporting information

The ethylene glycol-mediated sol-gel synthesis of nano AlF₃: structural and acidic properties after different post-treatments

Wei Mao, Yanbo Bai, Zhaohua Jia, Yue Qin, Bo Wang, Wei Zhang, Jian Lu,* Erhard Kemnitz*

a. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, China.
b. Department of Chemistry, Humboldt-Universitat zu Berlin, Brook-Taylor-Strase 2, D-12489 Berlin, Germany.

* Corresponding Author, E-mail: hz_mw@163.com (W. Mao); lujian204@gmail.com (J. Lu); erhard.kemnitz@chemie.hu-berlin.de (E. Kemnitz).
Figure S1 FT-IR spectra of the precursor (dried gel-180) and the resulting nano AlF₃ samples (AlF₃-F(180) and AlF₃-c(180)).
Figure S2 XRD patterns of the precursor (dried gel-180) and the resulting nano AlF$_3$ samples (AlF$_3$-F(180) and AlF$_3$-c(180)).
Figure S3 TG-DTA-MS of dried gel-180 under air. (a) TG-DTA curve and (b) MS curves of m/z 18 (H_2O^+), m/z 19 (F^+), m/z 31 (EG fragment), m/z 43 (isopropanol fragment) and m/z 44 (CO_2^+).
Figure S4 in situ FT-IR spectra of dried gel-120 calcined in the temperature range of room temperature~450 °C.
Figure S5 TEM element mapping of the precursor (dried gel-120) and the resulting nano AlF$_3$ samples (AlF$_3$-F and AlF$_3$-c).
Figure S6 Solid-state MAS NMR spectra of the precursor (dried gel-180) and the resulting nano AlF$_3$ after different post treatments. (a) central transition of 27Al NMR spectra, (b) 19F MAS NMR spectra and (c) rotor synchronized 19F spin-echo MAS NMR spectra.
Figure S7 HRTEM of AlF$_3$-c.
Figure S8 IR spectra of pyridine adsorbed on AlF₃-F and AlF₃-c.