ELECTRONIC SUPPLEMENTARY INFORMATION

Investigations on Reactivity, Stability and Biological Activity of Halido (NHC)gold(I) Complexes

Sina Katharina Goetzfried, ‡^a Paul Kapitza, ‡^a Caroline Marie Gallati,^a Anna Nindl,^{b,c} Monika Cziferszky,^a Martin Hermann,^d Klaus Wurst,^e Brigitte Kircher,^{b,c*} Ronald Gust^{a*}

- e. Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
- * E-mail: ronald.gust@uibk.ac.at; Tel: +43-512-507-58200 ‡ These authors contributed equally to the publication.

a. Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.

^{b.} Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
^{c.} Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria.

d. Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.

Table of content

1.	C	Char	acterization of 2 , 3 , 4 and 5								
1.1			¹ H NMR spectra								
	1.2		¹³ C NMR spectra	5							
	1.3		UV-Vis spectra								
	1.4		Electrospray ionization mass spectra	8							
2.	D	Data	a of reactivity studies	10							
3.	F	HPLO	C chromatograms obtained during the reactivity studies	11							
4.	B	Biolo	ogical activity	11							
5.	Ν	Mas	s spectra, HPLC chromatograms and UV-Vis spectra of experiments with Sec, NAC,								
	а	and	Суѕ	13							
	5.1		HPLC chromatogram and UV-Vis spectra of 3 with Sec	13							
	5.2		Mass spectra of experiments with 3 and Sec	15							
	5.3		HPLC chromatograms of 5 with Sec	17							
	5.4		HPLC chromatograms of 3 with NAC or Cys	18							

1. Characterization of 2, 3, 4 and 5

1.1 ¹H NMR spectra

Figure S1. ¹H NMR spectrum (400 MHz) of 2 recorded in CDCl₃.

Figure S2. ¹H NMR spectrum (400 MHz) of 3 recorded in CD₃CN.

Figure S3. ¹H NMR spectrum (400 MHz) of 4 recorded in CDCl₃.

Figure S4. ¹H NMR spectrum (400 MHz) of 5 recorded in CDCl₃.

1.2 ¹³C NMR spectra

Figure S5. ¹³C NMR spectrum (100 MHz) of 2 recorded in CDCl₃.

Figure S6. ¹³C NMR spectrum (100 MHz) of **3** recorded in CDCl₃.

Figure S7. ¹³C NMR spectrum (100 MHz) of 4 recorded in CDCl₃.

Figure S8. 13 C NMR spectrum (100 MHz) of 5 recorded in CDCl₃.

1.3 UV-Vis spectra

Figure S9. UV-Vis spectrum of 2.

Figure S10. UV-Vis spectrum of 3.

Figure S11. UV-Vis spectrum of 4.

Figure S12. UV-Vis spectrum of 5.

1.4 Electrospray ionization mass spectra

10 μ L of the HPLC samples, taken at various time points, were diluted with a 0.1% formic acid containing ACN/water = 50/50 (v/v) mixture. Subsequently, the samples were analyzed on an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using direct infusion and the HESI source in positive mode.

Figure S13. ESI-MS spectrum of 4 at t = 0 h in pure ACN (top) and ACN/water mixture = 50/50 (v/v) (bottom).

Figure S14. ESI-MS spectra of 4 at t = 24 h in pure ACN (top) and ACN/water mixture = 50/50 (v/v) (bottom).

2. Data of reactivity studies

	t = 0h					t = 0.5 h				t = 8h					t = 72h					
ACN	2	3	4	5	2	3	4	5	2	3	4	5			2	3	4	5		
2 (0.25mM)	96.95			3.05	96.85			3.15	96.09			3.91			96.23			3.77		
3 (0.25mM)		99.65		0.35		99.50		0.50		99.14		0.86				98.69		1.31		
4 (0.25mM)			98.74	1.26			98.09	1.91			91.45	8.55					83.57	16.43		
ACN/water	2	3	4	5	2	3	4	5	2	3	4	5		(7)	2	3	4	5	(6)	(7)
2 (0.25mM)	95.23			4.77	94.89			5.11	94.54			5.46			90.13			9.87		
3 (0.25mM)		98.92		1.08		95.27		4.73		83.14		13.01		3.85		64.11		25.12		10.77
4 (0.25mM)			93.96	6.04			76.01	23.99			74.40	25.60					47.50	44.41	8.09	
ACN/water	2	3	4	5	2	3	4	5	2	3	4	5			2	3	4	5		
+ 0.9% NaCl																				
2 (0.25mM)	97.68			2.32	97.80			2.20	97.89			2.11			97.96			2.04		
3 (0.25mM)	99.74	0.00		0.26	99.77	0.00		0.23	99.50	0.00		0.50			99.07	-		0.93		
4 (0.25mM)	55.36		42.88	1.76	52.83		38.41	8.77	51.32		35.24	13.44			51.35		34.79	14.07		
4 (1.0 mM)	30.29		64.92	4.79	25.50		55.91	17.47	25.66		56.35	17.36			23.11		58.87	17.72		
ACN/water	2	3	4	5	2	3	4	5	2	3	4	5	6		2	3	4	5	6	
+ KI																				
2 (0.25 mM)	0.00		95.81	4.19	0.00		79.02	20.98	0.00		75.80	24.20			0.00		75.31	24.69		
+ 1 eq. Kl																				
3 (1.0 mM)		0.00	89.38	10.62		0.00	68.84	31.16		0.00	71.69	28.31				0.00	72.21	27.79		
+ 20 eq. Kl																				
3 (0.25mM)		15.80	78.78	5.42			80.20	19.80			40.61	39.44	19.95				30.96	47.36	21.68	
+ 1 eq. Kl																				
4 (0.25 mM)			98.09	1.91			84.24	15.76			76.12	23.88					75.24	24.76		
+ 1 eq. Kl																				

Table S1. Relative peak areas [%] of 2, 3, 4 and 5 in ACN, ACN/water, ACN/water + 0.9%NaCl, ACN/water + KI, determined by HPLC-UV-Vis.

3. HPLC chromatograms obtained during the reactivity studies

Figure S15. HPLC chromatogram of 5 in ACN/water mixture = 50/50 (v/v) with 1 eq. of KI.

4. Biological activity

Figure S16. Anti-proliferative activity of complexes **2**, **3**, **4** and **5** in HL-60 cancer cells at different concentrations after 72 h incubation. Auranofin and Cisplatin served as reference. Values are given in μ M. Proliferation in the absence of the compounds was set to 100%. The mean proliferation ± standard deviation was calculated from three independent experiments.

Figure S17. Metabolic activity of complexes **2**, **3**, **4** and **5** after 72 h incubation in HL-60 cells at different concentrations. Auranofin and Cisplatin served as reference. The metabolic activity in the absence of the compounds was set to 100%. The mean ± standard deviation was calculated from three independent experiments.

Figure S18. Antiproliferative (A) and antimetabolic activity (B) of **2**, **3**, **4**, and **5** at different concentrations in A2780wt (blue) and A2780cis (purple) cells after 72 h of incubation. Auranofin and Cisplatin served as reference. Compound concentrations are given in μ M. Proliferation in the absence of the compounds was set at 100%. The mean value + standard error was calculated from three independent experiments.

5. Mass spectra, HPLC chromatograms and UV-Vis spectra of experiments with Sec, NAC, and Cys

5.1 HPLC chromatogram and UV-Vis spectra of **3** with Sec

Figure S19. HPLC chromatogram of 3 in ACN/water mixture = 50/50 (v/v) with 1 eq. Sec taken after 5 min.

Figure S20. On-line UV-Vis spectrum of (NHC)Au(I)Sec (taken from the HPLC chromatogram 3 + Sec (Figure S19)).

Figure S21. UV-Vis spectrum of peak 2 at t_{ret} = 6.81 min (taken from the HPLC chromatogram 3 + Sec (Figure S19)).

Figure S22. UV-Vis spectrum of 5 (taken from the HPLC chromatogram 3 + Sec (Figure S19)).

5.2 Mass spectra of experiments with 3 and Sec

 $10 \,\mu\text{L}$ of the HPLC samples, incubated for different lengths of time, were diluted with a 0.1% formic acid containing ACN/water = 50/50 (v/v) mixture. Subsequently, the samples were analysed on an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using direct infusion and the HESI source in positive mode.

Figure S23. Experimental (top) and simulated (bottom) isotopic distributions of Se-containing species (NHC)₂Au₂Sec (m/z 602 and 1204) and (NHC)₃Au₃Se (m/z 1634).

Figure S24. HCD fragmentation spectrum of m/z 602.

Figure S25. HCD fragmentation spectrum of m/z 739, which could not be identified. According to the isotopic distribution the species contains more than one Se. It may be a side product of an incomplete Sec reduction.

Figure S26. HCD fragmentation spectrum of m/z 1204.

Figure S27. HCD fragmentation spectrum of m/z 1634.

5.3 HPLC chromatograms of **5** with Sec

Figure S28. HPLC chromatograms of 5 in ACN/water mixture = 50/50 (v/v) with 1 eq. Sec.

5.4 HPLC chromatograms of ${\bf 3}$ with NAC or Cys

Figure S29. HPLC chromatograms of 3 in ACN/water mixture = 50/50 (v/v) with 1 eq. NAC.

Figure S30. HPLC chromatograms of 3 in ACN/water mixture = 50/50 (v/v) with 1 eq. Cys.