# Supporting Information

## A Monomeric (Trimethylsilyl)methyl Lithium Complex: Synthesis, Structure, Decomposition and Preliminary Reactivity Studies

Nathan Davison, Paul G. Waddell, Casey Dixon, Corinne Wills, Thomas J. Penfold\*, Erli Lu\*

### Table of Content

| NMR Spectra of complexes 1, 2 and 4 ·····                                                                                | S2  |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| Kinetic NMR study experimental details ······                                                                            | S6  |
| UV/Vis Spectra of complex <b>1</b> , Me <sup>6</sup> Tren and [LiCH <sub>2</sub> SiMe <sub>3</sub> ] <sub>6</sub> ······ | S6  |
| Single-crystal X-ray diffraction experiment details                                                                      | S9  |
| Computational Details and Data······                                                                                     | S10 |

NMR Spectra of complexes 1 and 2



Figure S1: <sup>1</sup>H NMR (d<sub>6</sub>-benzene, 25  $^{\circ}$ C, 300 MHz) of **1**.



Figure S3: <sup>7</sup>Li NMR (d<sub>6</sub>-benzene, 25 °C, 117 MHz) of **1**.



Figure S2: <sup>13</sup>C{<sup>1</sup>H} NMR (d<sub>6</sub>-benzene, 25 °C, 75 MHz) of **1**. # = Decomposition products (**2**).



Figure S4: <sup>1</sup>H NMR (d<sub>6</sub>-benzene, 25 °C, 300 MHz) of **2**. # = Unidentified impurities.



Figure S5: <sup>13</sup>C{<sup>1</sup>H} NMR (d<sub>6</sub>-benzene, 25 °C, 75 MHz) of **2**. # = Unidentified impurities.





Figure S7: <sup>1</sup>H NMR (d<sub>6</sub>-benzene, 25 °C, 300 MHz) of a mixture of **4** and Me<sup>6</sup>Tren.



Figure S8: <sup>7</sup>Li NMR (d<sub>6</sub>-benzene, 25 °C, 117 MHz) of a mixture of **4** and Me<sup>6</sup>Tren.



Figure S9: <sup>1</sup>H NMR (d<sub>6</sub>-benzene, 25 °C, 300 MHz) of an NMR scale reaction between **2** and hexamethyldisiloxane and <sup>1</sup>H NMR of both starting materials.

#### Kinetic NMR experimental procedure.

 $LiCH_2SiMe_3$  (0.0753g, 0.8 mmol),  $Me_6Tren$  (0.1846g, 0.8 mmol), cyclohexane (0.0673 g, 0.8 mmol) and  $C_6D_6$  (1.9016g, 2 ml) were placed into separate vials. The  $C_6D_6$  was split and 1 ml was added to each of the LiCH\_2SiMe\_3 and cyclohexane. The solution of cyclohexane in  $C_6D_6$  was added to the Me\_6Tren. The solution of LiCH\_2SiMe\_3 was added to the mixed solution of Me\_6Tren and cyclohexane at room temperature and the time of mixing was recorded. 0.5570g of the resulting solution was placed in a J Young NMR tube in glove box.

The concentration of **1** was obtained from the area of the signal at 0.46 ppm (9H, -SiMe<sub>3</sub>), the concentration of **2** from the area of the signal at 3.38 ppm (8H, NCH<sub>2</sub>CH<sub>2</sub>N), the concentration of vinyl dimethyl amine from the area of the signal at 6.03 ppm (1H, =CH-N) and the concentration of tetramethylsilane from the area of the signal at 0.00 ppm (12H), using cyclohexane (12H, 1.40 ppm) as the internal standard. The MestReNova<sup>TM</sup> NMR software was used to process the spectrum and obtain accurate integrations.



Figure S10: <sup>1</sup>H NMR (d<sub>6</sub>-benzene, 25 °C, 500 MHz) of **1**. Internal standard (I) = cyclohexane.  $[C]_0 = 0.4 \text{ M}, [I] = 0.4 \text{ M}.$ 

UV-Vis Spectra of Complex 1, Me<sup>6</sup>Tren and [LiCH<sub>2</sub>SiMe<sub>3</sub>]<sub>6</sub>



Figure S11. UV Absorption spectra of complex **1**, Me<sup>6</sup>Tren and [LiCH<sub>2</sub>SiMe<sub>3</sub>]<sub>6</sub> in *n*-hexane. Concentration: 0.5 mmol L<sup>-1</sup>. Temperature: 25 °C.



Figure S12. (a) Geometry optimisation of complex **1**; (b) the electron density difference analysis associated with a possible absorption band at 214.8 nm (Table S3). Colour codes for (b): green (loss in electron density); purple (gain in electron density).

#### Single Crystal X-ray Diffraction Details

Data for the structures of **1-3** were collected 150 K on a Rigaku Oxford Diffraction Xcalibur, Atlas, Gemini ultra diffractometer equipped with an Oxford Cryosystems CryostreamPlus open-flow N<sub>2</sub> cooling device using copper radiation ( $\lambda_{CuK\alpha}$  = 1.54184 Å). The intensities were corrected for absorption empirically using spherical harmonics. Cell refinement, data collection and data reduction were undertaken via the software CrysAlisPro<sup>1</sup>; solved using XT<sup>2</sup> and refined by XL<sup>3</sup> using the Olex2 interface<sup>4</sup>. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were positioned with idealised geometry and their atomic displacement parameters (ADP) constrained to be an appropriate multiple of the parent atom.

The macrocyclic molecule in the structure was observed to be disordered and was hence modelled in two discreet orientations with appropriate restraints applied to ADPs and bond geometry.

| Complex                                        | 1                                                   | 2                                                              | 3                                          | 4                                                                              |
|------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|
| Empirical formula                              | C <sub>16</sub> H <sub>41</sub> LiN <sub>4</sub> Si | C <sub>16</sub> H <sub>40</sub> Li <sub>2</sub> N <sub>6</sub> | $C_{20}H_{52}Li_2N_6O_2Si_2$               | C <sub>68</sub> H <sub>84</sub> Li <sub>4</sub> O <sub>4</sub> Si <sub>4</sub> |
| Formula weight                                 | 324.56                                              | 330.42                                                         | 478.73                                     | 1105.47                                                                        |
| Temperature/K                                  | 150.0(2)                                            | 150.0(2)                                                       | 150.0(2)                                   | 150.0(2)                                                                       |
| Crystal system                                 | monoclinic                                          | monoclinic                                                     | monoclinic                                 | monoclinic                                                                     |
| Space group                                    | P2₁/n                                               | C2/c                                                           | C2/c                                       | P2 <sub>1</sub> /c                                                             |
| a/Å                                            | 10.8910(3)                                          | 15.6022(3)                                                     | 16.9028(5)                                 | 12.7436(2)                                                                     |
| b/Å                                            | 18.7942(5)                                          | 10.0920(2)                                                     | 8.8805(3)                                  | 22.0133(3)                                                                     |
| c/Å                                            | 10.9483(3)                                          | 14.6868(3)                                                     | 19.9387(7)                                 | 23.1214(4)                                                                     |
| α/°                                            | 90                                                  | 90                                                             | 90                                         | 90                                                                             |
| β/°                                            | 94.108(3)                                           | 111.323(2)                                                     | 108.353(4)                                 | 94.5910(10)                                                                    |
| γ/°                                            | 90                                                  | 90                                                             | 90                                         | 90                                                                             |
| Volume/Å <sup>3</sup>                          | 2235.22(11)                                         | 2154.24(8)                                                     | 2840.67(17)                                | 6465.40(18)                                                                    |
| Z                                              | 4                                                   | 4                                                              | 4                                          | 4                                                                              |
| ρ <sub>calc</sub> g/cm <sup>3</sup>            | 0.964                                               | 1.019                                                          | 1.119                                      | 1.136                                                                          |
| µ/mm⁻¹                                         | 0.919                                               | 0.467                                                          | 1.328                                      | 1.193                                                                          |
| F(000)                                         | 728.0                                               | 736                                                            | 1056                                       | 2368.0                                                                         |
| Crystal size/mm <sup>3</sup>                   | 0.23 × 0.22 × 0.13                                  | 0.31 × 0.2 × 0.12                                              | 0.35 × 0.25 × 0.18                         | 0.22 × 0.12 × 0.04                                                             |
| Radiation                                      | Cu Kα (λ = 1.54184)                                 | Cu Kα (λ = 1.54184)                                            | Cu Kα (λ = 1.54184)                        | Cu Kα (λ = 1.54184)                                                            |
| 2O range for data<br>collection/°              | 9.366 to 133.246                                    | 10.672 to 133.228                                              | 9.346 to 133.322                           | 7.672 to 133.268                                                               |
| Index ranges                                   | -12 ≤ h ≤ 12, -18 ≤ k                               | -15 ≤ h ≤ 18, -11 ≤ k                                          | -20 ≤ h ≤ 20, -10 ≤ k                      | -15 ≤ h ≤ 15, -26 ≤ k ≤                                                        |
| -                                              | ≤ 22, -13 ≤ I ≤ 12                                  | ≤ 12, -17 ≤   ≤ 17                                             | ≤ 9, -23 ≤   ≤ 23                          | 24, -27 ≤ l ≤ 26                                                               |
| Reflections collected                          | 17538                                               | 14540                                                          | 10127                                      | 59102                                                                          |
| Independent reflections                        | 3923 [R <sub>int</sub> = 0.0870,                    | 1902 [R <sub>int</sub> = 0.0459,                               | 2503 [R <sub>int</sub> = 0.0751,           | 11344 [R <sub>int</sub> = 0.0810,                                              |
|                                                | R <sub>sigma</sub> = 0.0627]                        | R <sub>sigma</sub> = 0.0223]                                   | R <sub>sigma</sub> = 0.0452]               | R <sub>sigma</sub> = 0.0511]                                                   |
| Data/restraints/parameters                     | 3923/345/266                                        | 1902/0/115                                                     | 2503/0/151                                 | 11344/784/733                                                                  |
| Goodness-of-fit on F <sup>2</sup>              | 1.067                                               | 1.045                                                          | 1.052                                      | 1.026                                                                          |
| Final R indexes [I>=2σ (I)]                    | R <sub>1</sub> = 0.0590, wR <sub>2</sub> =          | R <sub>1</sub> = 0.0398, wR <sub>2</sub> =                     | R <sub>1</sub> = 0.0447, wR <sub>2</sub> = | R <sub>1</sub> = 0.0544, wR <sub>2</sub> =                                     |
|                                                | 0.1466                                              | 0.1065                                                         | 0.1161                                     | 0.1340                                                                         |
| Final R indexes [all data]                     | R <sub>1</sub> = 0.0805, wR <sub>2</sub> =          | $R_1 = 0.0444$ , $wR_2 =$                                      | R <sub>1</sub> = 0.0533, wR <sub>2</sub> = | R <sub>1</sub> = 0.0726, wR <sub>2</sub> =                                     |
|                                                | 0.1637                                              | 0.1110                                                         | 0.1262                                     | 0.1486                                                                         |
| Largest diff. peak/hole / e<br>Å <sup>-3</sup> | 0.29/-0.31                                          | 0.17/-0.14                                                     | 0.31/-0.35                                 | 1.06/-0.34                                                                     |

#### Table S1. Crystal Structure Refinement Details for Complexes

#### **Computational Details**

#### General

Optimizations were carried out with the <sup>B3LYP5</sup> x-c functionals as implemented in the ORCA quantum chemistry software<sup>6</sup>. Grimme's D3 dispersion correction was added to account for weak interactions. Throughout optimizations were carried out with the def2-TZVP<sup>7</sup> basis set. In order to speed up the calculations the RI-J and COSX (RIJCOSX) were used respectively for Coulomb integrals and numerical integration for HF exchange. During the geometry optimisations, the total SCF energy was set to converge within 10<sup>-6</sup> a.u., while the gradient converged to 10<sup>4-</sup> a.u. Single point calculations with DLPNO-CCSD and a def2-TZVP basis set were also performed using ORCA quantum chemistry software.

Table S2. Cartesian coordinates of optimized structure of 1.

Coordinates from ORCA-job Li

| Ν  | 6.77101640109436  | 2.62960348839574 | 3.95658682451567 |
|----|-------------------|------------------|------------------|
| Ν  | 4.51459113621450  | 0.49931143417387 | 6.18363760799703 |
| С  | 7.39393395696241  | 4.16424050115539 | 7.50941651348532 |
| С  | 8.09923288944361  | 2.32848522562653 | 3.39083244062769 |
| Н  | 8.03558671005258  | 1.64964945743952 | 2.49944267882872 |
| Н  | 8.65489679905843  | 1.76842231163746 | 4.17000700591144 |
| С  | 5.85956284175626  | 3.28143612932315 | 2.99276064177843 |
| Н  | 5.05090518799869  | 2.58460788110379 | 2.66775693198714 |
| Н  | 6.42111829327072  | 3.51627826810565 | 2.06387441472349 |
| С  | 6.18866817776041  | 1.43548435394794 | 4.60440239850109 |
| Н  | 6.98410647919169  | 0.97112831496169 | 5.22157911697039 |
| Н  | 5.88638995815812  | 0.67126464675633 | 3.84422534327307 |
| Li | 7.31739607603433  | 4.17938058977509 | 5.42721420893417 |
| Ν  | 8.97422285335186  | 4.60025049690959 | 4.05748541347467 |
| Ν  | 11.86263420060305 | 3.52712307432334 | 6.28629051641428 |
| С  | 8.59021073751397  | 5.94752831673058 | 3.60090160316143 |
| Н  | 9.24876599354782  | 6.31569736341916 | 2.76891859759731 |
| Н  | 8.75741356870364  | 6.63302094007135 | 4.45578273653333 |
| С  | 8.90686522293756  | 3.57771558315267 | 2.99445404125159 |
| Н  | 9.92753881562713  | 3.24979427278903 | 2.68631025145232 |
| Н  | 8.47073003691846  | 4.02950203607047 | 2.07936585893088 |
| С  | 10.26890492616497 | 4.63456549502231 | 4.76539149478022 |

| Н | 10.20750129753219 | 5.45735176797457 | 5.50880842632068 |
|---|-------------------|------------------|------------------|
| Н | 11.10826762802390 | 4.88756448820086 | 4.06765890466771 |
| С | 10.63073935832058 | 3.34238848379707 | 5.51600386027912 |
| Н | 9.76380675983523  | 3.04478117525393 | 6.16009200988792 |
| Н | 10.79240104283563 | 2.52200580142422 | 4.78590314494657 |
| С | 11.61997919077313 | 4.08376300295097 | 7.62540974407327 |
| Н | 11.36513906991885 | 3.27364312666493 | 8.35918044509959 |
| Н | 10.71261863713600 | 4.71979026808336 | 7.57244864619586 |
| С | 12.78683100554421 | 4.92187809761316 | 8.15472259329198 |
| Н | 13.00177943708299 | 5.77009630712374 | 7.47369422661805 |
| Н | 13.71891176573929 | 4.32742350076919 | 8.25499636510568 |
| Н | 12.54898665678448 | 5.32837984553219 | 9.15908998890161 |
| С | 12.73631881231180 | 2.35242903177096 | 6.30020089088886 |
| Н | 12.17731697984563 | 1.42297733089295 | 6.59876205814707 |
| Н | 13.49602182857793 | 2.50948890155514 | 7.09342799318479 |
| С | 13.46737119190019 | 2.11627626823009 | 4.97545843637781 |
| Н | 12.76432231828112 | 1.92013423271949 | 4.13887139117911 |
| Н | 14.13863829919762 | 1.23558999965717 | 5.05018939619522 |
| Н | 14.07591424794611 | 3.00243791126941 | 4.70142237056592 |
| Ν | 6.15263493788413  | 5.52275192166636 | 4.11680694533843 |
| Ν | 5.56414764397206  | 8.31489767083215 | 6.63120946460770 |
| С | 5.19974308882505  | 4.56495552655586 | 3.52988402071026 |
| Н | 4.59259337115782  | 5.02220264095001 | 2.70320446393050 |
| Н | 4.48469406916285  | 4.29476514013664 | 4.33286921982583 |
| С | 7.12487295216752  | 6.05793049599840 | 3.14274838691357 |
| Н | 6.91353404677116  | 7.12856506656243 | 2.91072011358662 |
| Н | 6.99996626891499  | 5.53016764797598 | 2.17477524633895 |
| С | 5.45057766938443  | 6.56964649107841 | 4.88446523864108 |
| Н | 4.70167312321306  | 6.05612305312889 | 5.52292427936882 |
| Н | 4.88040453415656  | 7.26016178420161 | 4.21011168607548 |
| С | 6.35920861135965  | 7.40847262639181 | 5.79924775389660 |
| Н | 6.99278818266961  | 6.71127279315261 | 6.40589828044300 |

| Н | 7.04932969239415 | 8.01523483350193  | 5.17725860620730 |
|---|------------------|-------------------|------------------|
| С | 5.12864376707160 | 7.69152439685673  | 7.89009066804487 |
| Н | 5.93656822122045 | 7.74092253664549  | 8.66795033423146 |
| Н | 4.97906673466381 | 6.60879194817876  | 7.70014974141614 |
| С | 3.82947997478788 | 8.28212558219440  | 8.44543154514820 |
| Н | 3.00785509065650 | 8.18628428592885  | 7.70623322980524 |
| Н | 3.93133249780155 | 9.35826084874004  | 8.69747563949853 |
| Н | 3.53117073419482 | 7.75683286341760  | 9.37580104177230 |
| С | 6.17659941155579 | 9.63198196505668  | 6.82094575639122 |
| Н | 7.24776834412690 | 9.54676382156747  | 7.15173926722113 |
| Н | 5.64594447853820 | 10.13092467915969 | 7.65795122004891 |
| С | 6.08321643052699 | 10.53437910209486 | 5.58695192534015 |
| Н | 6.61660244143903 | 10.10520299994562 | 4.71305944554328 |
| Н | 6.53872618707704 | 11.52560227289421 | 5.79013574502430 |
| Н | 5.02504948167791 | 10.68635829011812 | 5.29304244701867 |
| Н | 7.97598095447897 | 3.33104340575201  | 7.98420531676968 |
| Н | 6.40690976749872 | 4.12867648150157  | 8.04125408726193 |
| Н | 7.88028415536917 | 5.08501276865207  | 7.93019175303274 |
| С | 4.99646169764614 | 1.72521602142107  | 5.53440346538930 |
| Н | 5.32014324614273 | 2.48150757864335  | 6.28764886119885 |
| Н | 4.16514912048845 | 2.19477617709207  | 4.95923994701959 |
| С | 4.73543451501161 | 0.46827543255688  | 7.63396132209232 |
| С | 6.21241798151963 | 0.45949623144873  | 8.03033576727479 |
| Н | 4.24850264053936 | -0.45504721699738 | 8.01623992238680 |
| Н | 4.22016117264524 | 1.32471508375510  | 8.15029191420781 |
| Н | 6.73360237523224 | -0.41092430301402 | 7.57984099502246 |
| Н | 6.31092100204329 | 0.39195227628824  | 9.13308403245015 |
| Н | 6.73157561834027 | 1.38844945817038  | 7.71673538171415 |
| С | 3.15893755012772 | 0.11042205475934  | 5.79761706758141 |
| С | 3.03193801917339 | -0.32065072046888 | 4.33421928880873 |
| Н | 2.41049108533293 | 0.92534061128468  | 6.00913694045226 |
| Н | 2.86313425255913 | -0.74285075463194 | 6.44526177153015 |

| Н | 3.27473614049432 | 0.50494902468398  | 3.63337530232056 |
|---|------------------|-------------------|------------------|
| Н | 1.99299437139018 | -0.64053899382009 | 4.11205510645285 |
| Н | 3.71604302014176 | -1.16541476978385 | 4.11379298668716 |

Table S3. TD-DFT calculation results in the UV region

| Note: The density difference in Figure 4 corresponds to the transition at 214.8 |                  |                                  |
|---------------------------------------------------------------------------------|------------------|----------------------------------|
|                                                                                 | sWavelength (nm) | Oscillator Strength (arb. units) |
|                                                                                 | 384.6            | 0.000391632                      |
|                                                                                 | 288.1            | 0.003666203                      |
|                                                                                 | 277.4            | 0.000136559                      |
|                                                                                 | 275.0            | 0.026216805                      |
|                                                                                 | 256.9            | 0.006504681                      |
|                                                                                 | 257.3            | 0.002909365                      |
|                                                                                 | 244.0            | 0.002791437                      |
|                                                                                 | 238.0            | 0.004144694                      |
|                                                                                 | 216.0            | 0.002644470                      |
|                                                                                 | 229.0            | 0.001829772                      |
|                                                                                 | 210.4            | 0.005750149                      |
|                                                                                 | 222.1            | 0.030206657                      |
|                                                                                 | 214.8            | 0.060790309                      |
|                                                                                 | 216.4            | 0.005409655                      |
|                                                                                 | 212.0            | 0.005098303                      |
|                                                                                 | 204.3            | 0.031057306                      |
|                                                                                 | 203.1            | 0.021005109                      |
|                                                                                 | 196.2            | 0.003763692                      |
|                                                                                 | 200.6            | 0.000742650                      |
|                                                                                 | 197.5            | 0.031121178                      |
|                                                                                 | 203.9            | 0.018545091                      |
|                                                                                 | 195.6            | 0.002877630                      |
|                                                                                 | 198.0            | 0.000889426                      |

| Wavelength (nm) | Oscillator Strength (arb. units) |
|-----------------|----------------------------------|
| 202.3           | 0.016137849                      |
| 195.5           | 0.023372335                      |
| 187.7           | 0.002101476                      |
| 188.2           | 0.001260989                      |
| 191.8           | 0.003287311                      |
| 195.1           | 0.018168607                      |
| 192.5           | 0.008828247                      |

[4] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339-341.

[5] Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* 2008, *10*, 6615-6620.
[6] Neese, F. "Software update: the ORCA program system, version 4.0." Wiley

Interdisciplinary Reviews: Computational Molecular Science 8.1 (2018): e1327.

<sup>[1]</sup> CrysAlisPro, Rigaku Oxford Diffraction, Tokyo, Japan.

<sup>[2]</sup> Sheldrick, G.M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3-8.

<sup>[3]</sup> Sheldrick, G.M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.

<sup>[7]</sup> Florian, W. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.