Facile synthesis of mesoporous polymeric carbon nitride nanosheets

anchored by Pt with ultralow loading for high-efficiency photocatalytic

H₂ evolution

Siyuan Ye,^a Changsheng Su,^b Lili He,^c Mengli Li,^{*a} Zheng Yan,^a Jun Wu,^d Hongxia Shen,^{*a} Xuebo Cao^{*a}

^a.College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118

Jiahang Road, Jiaxing 314001, PR China

^{b.}Department of Chemical and Biomolecular Engineering, University of Notre Dame,

IN 46556, USA

^{c.}Graduate School of St. Paul University Philippines

^d Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, PR China

Fig. S1 (a) AFM image and (b) corresponding height profiles along the white line in figure (a) of CNNS.

Fig. S2 SEM images of (a) bulk CNu, (b) CNNSu, and TEM images of CNNSu (c, d)

Fig. S3 (a) Energy disperse spectrum, (b) high-resolution TEM and (c) TEM image of Pt/CNNS-5H (H₂PtCl₆·6H₂O solution: 1mL) and its (d) Pt, (e) N and (f) Pt, N merged element mappings.

Fig. S4 STEM image of Pt/CNNS-5H (H₂PtCl₆·6H₂O solution: 1mL).

Fig. S5 High-resolution XPS of (a) C 1s, (b) N 1s, and (c) Pt 4f in CNu and CNNSu asobtained samples.

Table S1 Physicochemical properties and photocatalytic activities of the CN and CNNSsamples for H_2 evolution reduction under visible light.

Sample	² Specified surface area (m /g)	Binding energy (eV)	H resolution (μmol/h)	
CN	9.96	2.76	16.1	
CNNS-2.5H	61.63	2.77	118.68	
CNNS-5H	91.77	2.83	172.79	
CNNS-10	80.60	2.86	150.28	
CNNS-15	64.02	2.88	97.24	

Fig. S6 Mott-Schottky plots of CN (a) and CNNS-5H (b) collected at various frequencies¹ versus saturated Ag/AgCl reference electrode

Fig. S7 (a) H_2 evolution rate under visible light irradiation over CNu with varied $H_2PtCl_6 \cdot 6H_2O$ solution (2 mg/mL in H_2O) addition, (b) H_2 yield rate under visible light irradiation over CNu and CNNSu with Pt as cocatalyst (Pt content, 0.28 wt%).

Catalyst	Light Source	Cocatalyst	H ₂ evolution rate	H ₂ evolution rate	References
		(wt%)	(µmol/g/h)	(mmol/g/h, <i>per</i> Pt)	
CNNS	300 W Xe lamp	Pt, 0.23	3455.8 (λ>400 nm)	1502.5 (λ>400 nm)	This work
			1888.4 (λ>420 nm)	821.0 (λ>420 nm)	
CNNSu	300 W Xe lamp	Pt, 0.28	6412 (λ>400 nm)	2290 (λ>400 nm)	This work
			3379 (λ>420 nm)	1206.8 (λ>420 nm)	
Atomically	300 W Xe lamp	Pt, 3	3809.6	126.99	[2]
thin CNNS	(λ>420 nm)				
g-C ₃ N ₄	AM 1.5	Pt (II), 0.24	138	57.5	[3]
g-C ₃ N ₄	300 W Xe lamp	Pt single	11472	1260.6	[4]
		atom, 0.91			
N-vacancy	300 W Xe lamp	Pt single	3020	175.58	[5]
g-C ₃ N ₄	(λ>420 nm)	atom, 1.72			
MOF	300 W Xe lamp	Pt single	11320	94.3	[6]
	(λ>420 nm)	atom, 12			
Defective	300 W Xe lamp	Pt, 1	4300	430	[7]
ultra-thin g-					
C ₃ N ₄					
Onion-ring	300 W Xe lamp	Pt, 3	1900	63.3	[8]
g-C ₃ N ₄	(λ>420 nm)				

Table S2 Comparation of hydrogen evolution rate on the basis of co-catalyst Pt undervisible light irradiation.

Fig. S8 Cycling runs for photostability test of photocatalytic H₂ evolution on CNNS-5H.

References

1 Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao and H. Fu, J. Am. Chem. Soc.,

2019, **141**(6), 2508-2515.

2 Y. Wang, P. Du, H. Pan, L. Fu, Y. Zhang, J. Chen, N. Tang and G. Liu, Adv. Mater., 2019,

31 (40), 1807540-1807547.

3 X. Zhou, Y. Liu, Z. Jin, M. Huang, F. Zhou, J. Song, J. Qu, Y. Zeng, P. Qian, W. Wong,

Adv. Sci., 2021, 8, 2002465-2002473.

4 Y. Hu, Y. Qu, Y. Zhou, Z. Wang, H. Wang, B. Yang, Z. Yu, and Y. Wu, *Chem. Engin. J.*, **2021**, *412*, 128749-128757.

5 P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su and S. Guo, *Nano Energy*, 2019, **56**, 127-137.

6 Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai and Y. Zhou, Angew. Chem. Inter. Ed.,

2019, **58** (30), 10198-10203.

7 C. Han, P. Su, B. Tan, X. Ma, H. Lv, C.Huang, P. Wang, Z. Tong, G. Li, Y. Huang and Z. Liu, *J. Colloid Inter. Sci.*, 2021, **581**, 159-166.

8 L. Cui, J. Song, A.F. McGuire, S. Kang, X. Fang, J. Wang, C. Yin, X. Li, Y. Wang and B.

Cui, ACS Nano, 2018, **12**(6), 5551-5558.