Supplementary Information

Unique Cd_{0.5}Zn_{0.5}S/WO_{3-x} direct Z-scheme heterojunction with S, O vacancies and twinning superlattices for efficient photocatalytic water-splitting

Teng Hou,^a Hanchu Chen,^{a,c} Yanyan Li,^a Hui Wang,^{a,c} Fengli Yu,^a Caixia Li,^b Haifeng Lin,*^a Shaoxiang Li^b and Lei Wang^{a,b}

^a Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

^b Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

^c Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

* Corresponding author. E-mail address: hflin20088@126.com (H. Lin).

Characterization results

Fig. S1. XRD patterns of the $C_m Z_{1-m} S$ (m = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nanocrystals. The "spade" symbol indicates the zinc-blende CdS (JCPDS card No. 89-0440).

Fig. S2. XRD patterns of $C_{0.5}Z_{0.5}S$ and the $C_{0.5}Z_{0.5}S/yP$ synthesized with different $NaH_2PO_2 \cdot H_2O$ dosages.

Fig. S3. Determined bandgaps of (a) $C_{0.5}Z_{0.5}S$ and $C_{0.5}Z_{0.5}S/1.25P$ and (b) WO_{3-x} .

Fig. S4. (a, c) TEM and (b, d) HRTEM images of (a, b) $C_{0.5}Z_{0.5}S$ and (c, d) $C_{0.5}Z_{0.5}S/1.25P$.

Fig. S5. (a) TEM and (b) HRTEM graphs of WO_{3-x} .

Fig. S6. (a) TEM and (b) HRTEM images of A-WO_{3-x}. The inset in the upper right corner of (b) is the corresponding FFT result.

Table. S1. Elemental compositions of $C_{0.5}Z_{0.5}S$, $C_{0.5}Z_{0.5}S/1.25P$, and $C_{0.5}Z_{0.5}S/1.25P$ -7% WO_{3-x} determined by ICP-OES measurement.

Atomic ratios	C _{0.5} Z _{0.5} S	C _{0.5} Z _{0.5} S/1.25P	C _{0.5} Z _{0.5} S/1.25P-7% WO _{3-x}
Cd : Zn : S	1:0.94:1.90	1 : 0.96 : 1.89	-
Cd : Zn : S : W	-	-	1:0.93:1.87:0.07

Fig. S7. S 2p XPS spectra of $C_{0.5}Z_{0.5}S$, $C_{0.5}Z_{0.5}S/1.25P$, and $C_{0.5}Z_{0.5}S/1.25P$ -7% WO_{3-x}.

Fig. S8. EPR spectrum of WO_{3-x} nanocrystals.

Fig. S9. (a) Photocatalytic HER activities of different samples. (b) The influence of hole scavengers on the HER property of $C_{0.5}Z_{0.5}S/1.25P-7\%$ WO_{3-x}.

Fig. S10. (a) Photocatalytic HER activities and (b) the corresponding rates of $C_{0.5}Z_{0.5}S$ and $C_{0.5}Z_{0.5}S/yP$ prepared with varying NaH₂PO₂·H₂O dosages.

Fig. S11. Photocatalytic H_2 evolution of $C_{0.5}Z_{0.5}S/1.25P-7\%$ WO_{3-x} under 420-nm light irradiation.

Fig. S12. XRD patterns of the $C_{0.5}Z_{0.5}S/1.25P-7\%$ WO_{3-x} composite before and after photocatalytic stability test.

Fig. S13. (a) XPS survey spectrum, (b) Cd 3d, (c) Zn 2p, (d) S 2p, (e) W 4f, and (f) O 1s XPS spectra of the $C_{0.5}Z_{0.5}S/1.25P-7\%$ WO_{3-x} after cyclic HER test.

Fig. S14. Contact potential differences of WO_{3-x} and $C_{0.5}Z_{0.5}S/1.25P$ in relation to the chromium probe.

Fig. S15. (a) TEM and (b) HRTEM photographs of the $C_{0.5}Z_{0.5}S/1.25P-7\%$ WO_{3-x} composite deposited with Pt nanocrystals via visible-light irradiation.

Table. S2. Comparison on the photocatalytic HER activities of WO_{3} - and CdS-based photocatalysts.

Photocatalyst	Hole scavenger	Light source	Maximum rate	AQE	Reference
	(aqueous solution)	(Xe lamp)	(mmol·h ⁻¹ ·g ⁻¹)	(420 nm)	
Cd _{0.5} Zn _{0.5} S/WO _{3-x}	Lactic acid	λ > 420 nm	20.50	18.0%	This work
Cd _{0.5} Zn _{0.5} S/WO _{3-x}	Na ₂ S/Na ₂ SO ₃	λ > 420 nm	42.97	-	This work
WO ₃ /ZnIn ₂ S ₄	Na ₂ S/Na ₂ SO ₃	λ > 420 nm	1.95	18.7%	1
WO ₃ /CoP	TEOA	AM 1.5G	4.37	2.0%	2
WO ₃ @MoS ₂ /CdS	Lactic acid	λ > 420 nm	8.20	-	3
In ₂ O ₃ /CdZnS	Na_2S/Na_2SO_3	λ > 420 nm	1.11	0.3%	4
CdS/(WO₃&WS₂)	Lactic acid	λ > 400 nm	0.75	-	5
Cd _{0.5} Zn _{0.5} S/RP	-	λ > 420 nm	0.14	0.3%	6
WS ₂ /WO ₃	Lactic acid	UV-vis light	0.68	-	7
WS_2 - WO_3 · H_2O/g - C_3N_4	Lactic acid	λ > 420 nm	1.28	-	8
$Ni_2P/Cd_{0.5}Zn_{0.5}S$	Na_2S/Na_2SO_3	λ > 420 nm	1.31	29.0%	9
g-C ₃ N ₄ /WO ₃	ΤΕΟΑ	AM 1.5G	3.12	-	10
Zn _{0.5} Cd _{0.5} S/CoP	Ascorbic acid	AM 1.5G	12.18	4.4%	11
WO₃@SnS₂	Methanol	AM 1.5G	0.13	-	12
SiO ₂ /Ni ₂ P/rGO/Cd _{0.5} Zn _{0.5} S	Na_2S/Na_2SO_3	λ > 420 nm	11.67	15.6%	13
Au NPs/Cd _{0.5} Zn _{0.5} S	ΤΕΟΑ	λ > 400 nm	12.18	-	14
$Cd_{0.5}Zn_{0.5}S/Bi_2S_3$	Na_2S/Na_2SO_3	λ > 400 nm	16.30	19.6%	15
Cd _{0.5} Zn _{0.5} S/BiVO ₄	Na_2S/Na_2SO_3	λ > 420 nm	2.35	24.1%	16
Cd _{0.5} Zn _{0.5} S/CoO	Na_2S/Na_2SO_3	λ > 420 nm	7.95	37.1%	17
$Cd_{0.5}Zn_{0.5}S@Bi_2Fe_4O_9$	Na_2S/Na_2SO_3	λ > 420 nm	0.81	-	18
Cd _{0.5} Zn _{0.5} S/Co _{0.85} Se	Na_2S/Na_2SO_3	λ > 420 nm	7.59	15.9%	19
Ni(OH) ₂ /Zn _{0.5} Cd _{0.5} S	Na_2S/Na_2SO_3	λ > 400 nm	6.87	16.8%	20

References:

- 1 Y. Wang, D. Chen, Y. Hu, L. Qin, J. Liang, X. Sun and Y. Huang, Sustain. Energy Fuels, 2020, 4, 1681-1692.
- 2 T. Li, X. Guo, L. Zhang, T. Yan and Z. Jin, Int. J. Hydrogen Energy, 2021, 46, 20560-20572.
- 3 L. Zhang, H. Zhang, C. Jiang, J. Yuan, X. Huang, P. Liu and W. Feng, *Appl. Catal. B: Environ.*, 2019, **259**, 118073.
- 4 H. Yang, J. Tang, Y. Luo, X. Zhan, Z. Liang, L. Jiang, H. Hou and W. Yang, *Small*, 2021, **17**, 2102307.
- 5 H. Wang, C. Li, L. Ying and P. Fang, *Appl. Surf. Sci.*, 2018, **448**, 539-546.
- 6 F. Liu, F. Xue, Y. Si, G. Chen, X. Guan, K. Lu and M. Liu, ACS Appl. Nano Mater., 2021, 4, 759-768.
- 7 S. Zhang, S. Chen, D. Liu, J. Zhang and T. Peng, *Appl. Surf. Sci.*, 2020, **529**, 147013.
- 8 X. Wang, G. Hai, B. Li, Q. Luan, W. Dong and G. Wang, *Chem. Eng. J.*, 2021, **426**, 130822.
- 9 S. Peng, Y. Yang, J. Tan, C. Gan and Y. Li, *Appl. Surf. Sci.*, 2018, **447**, 822-828.
- 10 W. Yu, J. Chen, T. Shang, L. Chen, L. Gu and T. Peng, *Appl. Catal. B: Environ.*, 2017, **219**, 693-704.
- 11 P. Wang, S. Zhan, H. Wang, Y. Xia, Q. Hou, Q. Zhou, Y. Li and R. R. Kumar, *Appl. Catal. B: Environ.*, 2018, **230**, 210-219.
- 12 X. Zhang, R. Zhang, S. Niu, J. Zheng and C. Guo, J. Colloid Interface Sci., 2019, 554, 229-238.
- 13 P. Zhang, C. Xue, Y. Li, S. Guo, X. Zhang, P. Zhang and G. Shao, *Chem. Eng. J.*, 2021, 404, 126497.
- 14 Y. Liu, C. Du, C. Zhou and S. Yang, J. Ind. Eng. Chem., 2019, 72, 338-345.
- 15 M. Li, J. Sun, B. Cong, S. Yao and G. Chen, *Chem. Eng. J.*, 2021, **415**, 128868.
- 16 C. Zeng, Y. Hu, T. Zhang, F. Dong, Y. Zhang and H. Huang, J. Mate. Chem. A, 2018, 6, 16932-16942.
- 17 H. Zhao, L. Guo, C. Xing, H. Liu and X. Li, J. Mater. Chem. A, 2020, 8, 1955-1965.
- 18 H. Hua, F. Feng, M. Du, Y. Ma, Y. Pu, J. Zhang and X. A. Li, *Appl. Surf. Sci.*, 2021, **541**, 148428.
- 19 X. Sun, H. Du, ACS Sustainable Chem. Eng., 2019, **7**, 16320-16328.
- 20 X. Gao, D. Zeng, J. Yang, W. J. Ong, T. Fujita, X. He, J. Liu and Y. Wei, Chin. J. Catal., 2021, 42, 1137-1146.