Supporting information

Photophysical, photooxidation, and biomolecule-interaction of *meso*tetra(thienyl)porphyrins containing peripheral Pt(II) and Pd(II) complexes. Insights for photodynamic therapy applications

Isadora Tisoco^a, Maria Carolina Donatoni^b, Henrique Fernandes Vieira Victória^c, José Roberto de Toledo^c, Klaus Krambrock^c, Otávio Augusto Chaves^d, Kleber Thiago de Oliveira^b and Bernardo Almeida Iglesias^{a*}

^aDepartment of Chemistry, Federal University of Santa Maria, Av. Roraima, Santa Maria-RS, Brazil;

^bDepartment of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, São Carlos-SP, Brazil;

^cDepartment of Physics, Federal University of Minas Gerais, Av. Antônio Carlos, Belo Horizonte-MG, Brazil;

^dDepartment of Chemistry, University of Coimbra, Rua Larga, Coimbra, Portugal.

Elemental analysis and molar conductivity

The CHN% elemental analyses were performed using a Shimadzu EA112 microanalysis instrument. The molar conductance of the porphyrins ([] = 10^{-4} M range) in DMF solution at 25°C was measured using an MS Tecnopon conductometry model mCA 150.1 direct-reading conductivity bridge using 0.01 M KCI to calibrate. All experiments are conducted in duplicate.

The molar conductivity in DMF solutions for porphyrins are 280 to 300 S cm² mol⁻¹ range, indicating 1:4 electrolyte, as expected¹.

Free-base *meso*-tetra-(2-thienyl)porphyrin H_2TTP was synthetized and characterized according reported by Momo and co-workers².

	Elemental analysis, exp. (calc.) C ₃₆ H ₂₂ N ₄ S ₄				
H ₂ TTP	%C: (67.68) 67.90; %H: (3.47) 3.49; %N: (8.77) 8.76				
	[C ₇₆ H ₅₄ Cl ₄ N ₁₂ S ₄ Pt ₄](PF ₆) ₄ • 8H ₂ O				
PtbpyTTP	%C: (32.73) 31.55; %H: (1.94) 2.40; %N: (6.11) 5.71				
	[C ₇₆ H ₅₄ Cl ₄ N ₁₂ S ₄ Pd ₄](PF ₆) ₄ • 9H ₂ O				
PdbpyTTP	%C: (37.86) 35.44; %H: (2.26) 2.79; %N: (6.97) 6.52				
	Molar conductivity (S.cm ² .mol ⁻¹)				
PtbpyTTP	289.3				
PdbpyTTP	296.9				
DMF	1.00				

Table S1. The CHN% analysis and molar conductivity of porphyrins H₂TTP, PtbpyTTP, and PdbpyTTP.

Electrochemical analysis by cyclic voltammetry

Cyclic voltammograms of porphyrins were recorded with a potentiostat/galvanostat AutoLab Eco Chemie PGSTAT 128 N system at room temperature and under an argon atmosphere in a dry DMF solution. Electrochemical grade tetrabutylammonium hexafluorophosphate (TBAPF₆, 0.1 M) was used as a supporting electrolyte. A standard three-component system was used to carry out the CV experiments: a glassy carbon working electrode, a platinum wire auxiliary electrode, and a platinum wire *pseudo*-reference electrode. The ferrocenium/ferrocene redox couple was used as an internal reference to monitor the reference electrode ($E_{1/2} = 0.469 \text{ V}$)³.

Table S2. Redox potentials of porphyrins H_2TTP , PtbpyTTP, and PdbpyTTP in dry DMF solution, at scan rate 100 mV s⁻¹ (*E versus* Fc/Fc⁺).

Porphyrin	Por ^{0/1-}	Por ^{1-/2-}	Por ^{0/1+}	Por ^{1+/2+}	HOMO (eV) ^d	LUMO (eV) ^e	ΔΕ
H₂TTP	−1.08 Vª		+0.76 V ^c		-5.56	-3.72	1.84
PtbpyTTP	-1.22 V ^b	−1.46 Vª	+0.75 V ^c		-5.55	-3.58	1.97
PdbpyTTP	-1.60 V ^b	−2.13 V ^b	+0.49 V ^c		-5.29	-3.20	2.09

 $^{a}E_{1/2} = E_{pa} + E_{pc} / 2$; $^{b}Cathodic peak$; $^{c}Anodic peak$; $^{d}E_{HOMO} = -[4.8 + E_{oxid} (versus Fc^{+}/Fc)]$; $^{e}E_{LUMO} = -[4.8 + E_{red} (versus Fc^{+}/Fc)]$; $^{e}E_{LUMO} = -[4.8 +$

Figure S1. Cyclic voltammograms of porphyrins H_2TTP , **PtbpyTTP**, and **PdbpyTTP**. Electrolyte: TBAPF₆ 0.1 M; Solvent: DMF; Reference: Fc/Fc⁺; scan rate: 100 mV s⁻¹.

Figure S2. Normalized fluorescence emission decay of porphyrin H_2TTP , in DMSO solution, at $\lambda_{exc} = 455$ nm (NanoLED) and concentration of 2.0 μ M.

Figure S3. Normalized fluorescence emission decay of porphyrin **PtbpyTTP**, in DMSO solution, at λ_{exc} = 455 nm (NanoLED) and concentration of 2.0 µM.

Figure S4. Normalized fluorescence emission decay of porphyrin **PdbpyTTP**, in DMSO solution, at λ_{exc} = 455 nm (NanoLED) and concentration of 2.0 µM.

Aggregation study

Figure S5. Aggregation study for H_2TTP , using dimethyl sulfoxide (DMSO) as solvent. The inset shows the linear behavior of the absorbance at Soret band as a function of the concentration.

Figure S6. Aggregation study for **PtbpyTTP**, using dimethyl sulfoxide (DMSO) as solvent. The inset shows the linear behavior of the absorbance at Soret band as a function of the concentration.

Figure S7. Aggregation study for **PdbpyTTP**, using dimethyl sulfoxide (DMSO) as solvent. The inset shows the linear behavior of the absorbance at Soret band as a function of the concentration.

Figure S8. Photostability assay by UV-Vis of the porphyrin H_2TTP in DMSO solution after irradiation with a white-light source (400-800 nm) at a fluence rate of 50 mW cm⁻² and a total light dosage of 90 J cm⁻² for different periods (0 to 30 min) and initial concentration of 1.0 μ M (black line spectrum).

Figure S9. Photostability assay by UV-Vis of the porphyrin **PtbpyTTP** in DMSO solution after irradiation with a white-light source (400-800 nm) at a fluence rate of 50 mW cm⁻² and a total light dosage of 90 J cm⁻² for different periods (0 to 30 min) and initial concentration of 1.0 μ M (black line spectrum).

Figure S10. Photostability assay by UV-Vis of the porphyrin **PdbpyTTP** in DMSO solution after irradiation with a white-light source (400-800 nm) at a fluence rate of 50 mW cm⁻² and a total light dosage of 90 J cm⁻² for different periods (0 to 30 min) and initial concentration of 1.0 μ M (black line spectrum).

Stability in solution assays

Figure S11. Solution stability by UV–visible spectra for porphyrin H_2TTP in DMSO solution and initial concentration of 1.5 μ M (black line spectrum).

Figure S12. Solution stability by UV–visible spectra for porphyrin **PtbpyTTP** in DMSO solution and initial concentration of 1.5 μ M (black line spectrum).

Figure S13. Solution stability by UV–visible spectra for porphyrin **PdbpyTTP** in DMSO solution and initial concentration of 1.5 μ M (black line spectrum).

Singlet oxygen quantum yield (Φ_{Δ}) determination

Figure S14. Photo-oxidation of DPBF by irradiation with diode laser (660 nm) in the presence of H_2 TTP. The *inset* shows the first-order kinetic profile.

Figure S15. Photo-oxidation of DPBF by irradiation with diode laser (660 nm) in the presence of **PdbpyTTP**. The *inset* shows the first-order kinetic profile.

Figure S16. Photo-oxidation of DPBF by irradiation with diode laser (660 nm) in the presence of **PtbpyTTP**. The *inset* shows the first-order kinetic profile.

HSA-binding assays by UV-Vis absorption analysis

Figure S17. UV–Vis absorption spectra of porphyrin H_2TTP with increase HSA concentrations, in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution. The insert shows the plot of [HSA]/($\epsilon_a - \epsilon_f$) versus [HSA].

Figure S18. UV–Vis absorption spectra of porphyrin **PdbpyTTP** with increase HSA concentrations, in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution. The insert shows the plot of [HSA]/($\epsilon_a - \epsilon_f$) *versus* [HSA].

HSA-binding assays by steady-state fluorescence emission analysis

Figure S19. Steady-state fluorescence emission spectra for HSA without and upon successive additions of H_2TTP , in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 298.15 K. The concentration of compounds ranged from 0 to 60 µM. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S20. Steady-state fluorescence emission spectra for HSA without and upon successive additions of H_2TTP , in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 310.15 K. The concentration of compounds ranged from 0 to 60 µM. *Insert graph* shows the plot of F_0 /F *versus* [porphyrin].

Figure S21. Steady-state fluorescence emission spectra for HSA without and upon successive additions of H_2TTP , in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 318.15 K. The concentration of compounds ranged from 0 to 60 µM. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S22. Steady-state fluorescence emission spectra for HSA without and upon successive additions of **PtbpyTTP**, in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 310.15 K. The concentration of compounds ranged from 0 to 60 μ M. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S23. Steady-state fluorescence emission spectra for HSA without and upon successive additions of **PtbpyTTP**, in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 318.15 K. The concentration of compounds ranged from 0 to 60 μ M. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S24. Steady-state fluorescence emission spectra for HSA without and upon successive additions of **PdbpyTTP**, in a DMSO(5%)/Tris-HCI buffer (pH 7.4) solution at 298.15 K. The concentration of compounds ranged from 0 to 60 μ M. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S25. Steady-state fluorescence emission spectra for HSA without and upon successive additions of **PdbpyTTP**, in a DMSO(5%)/Tris-HCl buffer (pH 7.4) solution at 310.15 K. The concentration of compounds ranged from 0 to 60 μ M. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S26. Steady-state fluorescence emission spectra for HSA without and upon successive additions of **PdbpyTTP**, in a DMSO(5%)/Tris-HCl buffer (pH 7.4) solution at 318.15 K. The concentration of compounds ranged from 0 to 60 μ M. *Insert graph* shows the plot of F₀/F *versus* [porphyrin].

Figure S27. Modified Stern–Volmer plots for HSA:H₂TTP at three different temperatures.

Figure S28. Modified Stern–Volmer plots for HSA:PdbpyTTP at three different temperatures.

Figure S29. Van't Hoff plot for HSA:H₂TTP.

Figure S30. Van't Hoff plot for HSA: PtbpyTTP.

Figure S31. Van't Hoff plot for HSA: PdbpyTTP.

Time-resolved fluorescence decay with HSA

Figure S32. Normalized fluorescence emission decay for free **HSA**, in DMSO(5%)/Tris-HCl buffer (pH 7.4) solution, at λ_{exc} = 284 nm (NanoLED).

Figure S33. Normalized fluorescence emission decay for **HSA:H**₂**TTP**, in DMSO(5%)/Tris-HCl buffer (pH 7.4) solution, at λ_{exc} = 284 nm (NanoLED).

Figure S34. Normalized fluorescence emission decay for **HSA:PtbpyTTP**, in DMSO(5%)/Tris-HCl buffer (pH 7.4) solution, at λ_{exc} = 284 nm (NanoLED).

Figure S35. Normalized fluorescence emission decay for **HSA:PdbpyTTP**, in DMSO(5%)/Tris-HCl buffer (pH 7.4) solution, at λ_{exc} = 284 nm (NanoLED).

EPR analysis

Figure S36. Experimental EPR spectrum of the PBN spin adduct (pink line) and calculated spectrum (blue line) after illumination with white-light. The same EPR spectrum is observed for the porphyrins **H**₂**TTP**, **PtbpyTTP** and **PdbpyTTP** in DMSO solution.

Figure S37. Experimental EPR spectra of spin adducts produced by DMPO under white-light illumination in a DMSO solution containing the porphyrins (a) H_2TTP , (b) **PtbpyTTP** and (c) **PdbpyTTP** with the spin trap DMPO (0.3 M) as a function of the presence of HSA (red lines) protein.

Figure S38. Simulated EPR spectra of the DMPO* (black line), DMPO/•CH₃ (red line) and DMPO/ O_2^- (blue line) spin adducts which together constitute the common experimental EPR spectrum (green line) for the porphyrins **H**₂**TTP**, **PtbpyTTP** and **PdbpyTTP**, with and without HSA proteins, after exposure to white-light. In pink, the sum of the simulated spectra of the spin adducts is shown, reproducing the experimental data with good precision.

HSA photooxidation analysis by steady-state fluorescence emission

Figure S39. The HSA photooxidation assays in the presence of porphyrin H_2TTP upon excitation excitation of 290 nm, in the white-light irradiation conditions at period 0 to 30 min. *Inset plot:* first-order kinetic graphical profile.

Figure S40. The HSA photooxidation assays in the presence of porphyrin **PdbpyTTP** upon excitation excitation of 290 nm, in the white-light irradiation conditions at period 0 to 30 min. *Inset plot:* first-order kinetic graphical profile.

References

- 1. W. J. Geary, Coord. Chem. Rev., 1971, 7, 81-122.
- 2. P. B. Momo, C. Pavani, M. S. Baptista, T. J. Brocksom and K. T. de Oliveira, *Eur. J. Org. Chem.*, 2014, 4536–4547.
- 3. R. R. Gagne, C. A. Koval and G.C. Lisensky, *Inorg. Chem.*, 1980, **19**, 2854–2855.