Supporting Information

High-performance Li-ion battery driven by hybrid Li storage mechanism in three-dimensional architectured $\mathrm{ZnTiO} 3 / \mathrm{CeO}_{2}$ microsphere anode

Xue-Zhong Li ${ }^{a, d}$, Yu-Rui Ji ${ }^{a, c}$, Wu-Yi Chai ${ }^{c}$, Zhenxing Huo ${ }^{e}$, Ting-Feng Yi ${ }^{a, c, d, *}$, Ying Xie ${ }^{b, *}$
${ }^{a}$ School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR
\section*{China}
${ }^{b}$ Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China
${ }^{c}$ School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
${ }^{d}$ Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
${ }^{e}$ China United Network Communications Group Co., Ltd, Beijing 100032, PR China

* Corresponding author.

E-mail address:

tfyihit@,163.com (Ting-Feng Yi)
xieying@hlju.edu.cn (Ying Xie)

1. Materials synthesis

For the synthesis of $\mathrm{ZnTiO}_{3}-\mathrm{CeO}_{2}$ heterostructure, $2.19 \mathrm{~g} \mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ were dispersed in 50 mL ethylene glycol with continuous magnetic stirring for 24 h (solution A). At the same time, $3.4 \mathrm{~g} \mathrm{C}_{16} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Ti}$ was dripped into 50 ml anhydrous ethanol and stirred for 12 h to make it mix evenly (solution B). Then, solution A was slowly poured into solution B , and added $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ until uniformly mixed (solution C). The quality of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is quantified according to the proportion of the coating, the coated samples of $3 \mathrm{wt} \%, 6 \mathrm{wt} \%$ and $9 \mathrm{wt} \%$, were recorded as ZTO-CO1, ZTO-CO2 and ZTO-CO3 in order. Subsequently, the as-prepared solution C was transferred into a 100 mL Teflon-lined stainless-steel autoclave after stirring for 24 h and heated at 180 ${ }^{\circ} \mathrm{C}$ for 6 h . The obtained product was collected and washed with ethanol for several times and subsequently dried at $70{ }^{\circ} \mathrm{C}$ overnight. Then, the as-prepared $\mathrm{ZnTiO}_{3}-\mathrm{CeO}_{2}$ composites were calcined at $600^{\circ} \mathrm{C}$ for 3 h under atmosphere. Meanwhile, bare ZnTiO 3 materials as the baseline were prepared by a similar synthetic route without $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

2. Material characterization and electrochemical measurement

The crystal structure of pure ZnTiO_{3} and $\mathrm{ZnTiO}_{3}-\mathrm{CeO}_{2}$ were carried on X-ray powder diffraction (XRD) with Cu Ka radiation. The morphologies of the two synthesized materials were characterized via field emission scanning electron microscopy (ZEISS-SUPRA55 SAPPHIRE) and transmission electron microscopy (TEM, JEOL-2100F). The electrodes were fabricated by mixing $70 \mathrm{wt} \%$ active
materials, $20 \mathrm{wt} \%$ acetylene black and $10 \mathrm{wt} \%$ polyvinylidene, respectively, in NMP solution. The obtained slurries were coated onto copper foil, and then dried at $100^{\circ} \mathrm{C}$ under vacuum for 12 h . The CR2025 coin cells were assembled in an argon-filled glove box by using lithium foil as the counter electrode and Celgard 2500 membrane as the separator and containing a liquid electrolyte of $1 \mathrm{M} \mathrm{LiPF}_{6}$ in EC and $\mathrm{DMC}(1: 1, \mathrm{v} / \mathrm{v})$. The batteries tests were performed on between 0.01 and 3.0 V . Cycle voltammetry (CV) at $0.5 \mathrm{mV} \mathrm{s}^{-1}$ between 0.01 and 3.0 V and electrochemical impedance spectroscopy (EIS) in a frequency range of $10 \mathrm{mHz}-100 \mathrm{kHz}$ with AC voltage amplitude of 5 mV were conducted on the VSP electrochemical workstation (Bio-logic, FRA).

Figure S1. XRD Rietveld refinement profiles of (a) ZTO, (b) ZTO-CO1, (c) ZTO-

CO 2 and (d) ZTO-CO3.

Figure S2. (a) XPS survey spectrum of ZTO and corresponding high-resolution XPS spectra of (b) Zn 2p, (c) Ti 2p and (d) O1s.

Figure S3. XPS survey spectrum of ZTO-CO2 composite.

Figure S4. SEM images of (a) ZTO and (b) ZTO-CO2 cycled at $0.5 \mathrm{Ag}^{-1}$ after 500 cycles.

