Supporting information

Site-selective and cooperative doping of Gd₃Al₅O₁₂:Ce garnet for structure stabilization and warm w-LED lighting of low CCT and high CRI

Qinghong Meng,^a Guoying Zhao,^{b,c} Qi Zhu,^a Xiaodong Li,^a Xudong Sun,^{a,d} Ji-Guang Li^{c,*}

^aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education) and School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

^bSchool of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

^cResearch Center for Functional Materials, National Institute for Materials Science,

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^dFoshan Graduate school of Northeastern University, Foshan, Guangdong 528311, China

*Corresponding author

Dr. Ji-Guang Li

National Institute for Materials Science

Tel: +81-29-860-4394

E-mail: <u>LI.Jiguang@nims.go.jp</u>

Fig. S1 XRD patterns of the $Gd_{3-x}Ca_xHf_xAl_{5-x}O_{12}$ (x = 0-1.5; part a) and $Gd_3Sc_yAl_{5-y}O_{12}$ (y = 0.5-1.5; part b) powders obtained by calcining in air at 1550 °C for 6 h. The red and blue vertical bars donate the standard diffraction of $Gd_3Al_5O_{12}$ (JCPDS No. 73-1371) and $GdAlO_3$ (JCPDS No. 46-0395), respectively. The symbols \dagger , \ddagger and \ast in (a) denote α -Al₂O₃, $GdCaAl_3O_7$ and $CaAl_2O_4$, respectively.

Fig. S2 XRD patterns of the $Gd_{3-x}Ca_xHf_xSc_yAl_3O_{12}$ powders (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0). The red and pink vertical bars donate the simulated diffractions of $GdCa_2Hf_2Al_3O_{12}$ (x = 2.0, y = 0) and the standard diffractions of $Gd_3Al_5O_{12}$ (JCPDS No. 73-1371), respectively.

Fig. S3 The results of Rietveld refinement of XRD pattern for the $Gd_{3-x}Ca_xHf_xSc_yAl_3O_{12}$ powders (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0).

Table S1 Crystallographic data, atomic coordinates (x, y, z), atomic occupancy (Occ.) and isotropic displacement parameter (Å²) for the Gd_{3-x}Ca_xHf_xSc_yAl₃O₁₂ garnets (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0).

x=2.0, y=0.0	Atom	Position	x	У	Ζ	Occ.	$\mathbf{B}_{\mathrm{iso}}$
GdCa ₂ Hf ₂ Al ₃ O ₁₂	Gd	24c	1/8	0	1/4	0.333	0.21(4)
<i>a</i> = <i>b</i> = <i>c</i> = 12.4885(2) Å	Ca	24c	1/8	0	1/4	0.667	0.21(4)
$R_{\rm wp} = 9.08\%$	Hf	16a	0	0	0	1	0.25(2)
$R_{\rm p} = 6.72\%$	Al	24d	3/8	0	1/4	1	0.25(1)
$\chi^2 = 2.70$	0	96h	0.9636(3)	0.0511(3)	0.1598(3)	1	0.20(1)
<i>x</i> =1.5, <i>y</i> =0.5							
$Gd_{1.5}Ca_{1.5}Hf_{1.5}Sc_{0.5}Al_{3}O_{12}$	Gd	24c	1/8	0	1/4	0.5	0.22(3)
a = b = c = 12.4695(3) Å	Ca	24c	1/8	0	1/4	0.5	0.22(3)
$R_{\rm wp} = 8.16\%$	Hf	16a	0	0	0	0.75	0.08(2)
$R_{\rm p} = 6.26\%$	Sc	16a	0	0	0	0.25	0.08(2)
$\chi^2 = 2.05$	Al	24d	3/8	0	1/4	1	0.21(8)
	Ο	96h	0.9631(2)	0.0522(3)	0.1603(2)	1	0.40(1)

x=1.0, y=1.0							
Gd ₂ CaHfScAl ₃ O ₁₂	Gd	24c	1/8	0	1/4	0.667	0.18(3)
a = b = c = 12.4509(2) Å	Ca	24c	1/8	0	1/4	0.333	0.18(3)
$R_{\rm wp} = 8.88\%$	Hf	16a	0	0	0	0.5	0.27(3)
$R_{\rm p} = 6.70\%$	Sc	16a	0	0	0	0.5	0.27(3)
$\chi^2 = 2.12$	Al	24d	3/8	0	1/4	1	0.08(7)
	Ο	96h	0.9627(2)	0.0536(3)	0.1605(3)	1	0.04(1)
<i>x</i> =0.5, <i>y</i> =1.5							
$Gd_{2.5}Ca_{0.5}Hf_{0.5}Sc_{1.5}Al_{3}O_{12}$	Gd	24c	1/8	0	1/4	0.833	0.22(3)
a = b = c = 12.4217(1) Å	Ca	24c	1/8	0	1/4	0.167	0.22(3)
$R_{\rm wp} = 11.32\%$	Hf	16a	0	0	0	0.25	0.46(5)
$R_{\rm p} = 8.70\%$	Sc	16a	0	0	0	0.75	0.46(5)
$\chi^2 = 1.92$	Al	24d	3/8	0	1/4	1	0.29(9)
	0	96h	0.9621(3)	0.0548(4)	0.1610(4)	1	0.22(1)
χ^2 was defined as $R_{\rm wp}/R_{\rm exp}$	in the U	sers' Man	ual of TOPA	S V4.2 soft	ware. $R_{\rm p}, R_{\rm wp}$, and R_{exp}	are pattern

reliability factor, weighted profile reliability factor and expected reliability factor, respectively.

Table S2 The bond distances of d_4 , d_6 , d_{82} , d_{84} , d_{av} , d_{88} and d_{81} for the $Gd_{3-x}Ca_xHf_xSc_yAl_3O_{12}$ garnets (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0).

	d_4	d_6	d_{82}	d_{84}	$d_{\rm av}$	d_{88}	d_{81}
x=2.0, y=0.0	1.7035(4)	2.1434(4)	2.3952(4)	2.5627(4)	2.4790	2.8999	2.9998
<i>x</i> =1.5, <i>y</i> =0.5	1.6973(3)	2.1520(3)	2.3986(3)	2.5473(4)	2.4730	2.8782	2.9697
<i>x</i> =1.0, <i>y</i> =1.0	1.6968(3)	2.1575(3)	2.4015(3)	2.5285(4)	2.4650	2.8537	2.9391
<i>x</i> =0.5, <i>y</i> =1.5	1.6903(5)	2.1646(5)	2.4038(4)	2.5097(5)	2.4568	2.8356	2.9114

Fig. S4 XRD patterns of the $Gd_{2.97-x}Ca_xHf_xSc_yAl_3O_{12}$:0.03Ce phosphors (x = 0.5-2.0, y = 0.0-1.5, x + y = 2.0).

Fig. S5 Temperature-dependent photoluminescence spectra for $Gd_{0.97}Ca_2Hf_2Al_3O_{12}:0.03Ce$ (a, λ_{ex} = 408 nm) and $Gd_{2.47}Ca_{0.5}Hf_{0.5}Sc_{1.5}Al_3O_{12}:0.03Ce$ (b, λ_{ex} = 452 nm). The inset in (a) and (b) present the relative intensity of emission as a function of the measurement temperature.