Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Amorphous NiCoB-coupled MAPbI₃ for efficient photocatalytic hydrogen evolution

Lanxuan Jiang,^[a] Yanmei Guo,^[a] Shaopeng Qi,^[a] Ke Zhang,^[a] Jinxi Chen, ^[a] and

Yongbing Lou*[a] and Yixin Zhao^[b]

[a] School of Chemistry and Chemical Engineering, Southeast University, Nanjing,

211189, China. E-mail: lou@seu.edu.cn.

[b] School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.

1. Experimental Section

1.1 Chemicals and Materials

Methylamine solution (MA, 30 wt% in absolute ethanol, Aladdin), PbI₂(98%, Macklin), HI (55-57 wt% in water, Aladdin), H₃PO₂ (50 wt% in water, Aladdin), H₂PtCl₆ (99%, Jiuding Chemical), tetrabutylammonium fluorophosphate (TBAPF₆, 98%, Shanghai Xushuo), diethyl ether (C₄H₁₀O, \geq 99.7%, Sinopharm Chemical Reagent Co., Ltd, China), methylene chloride (CH₂Cl₂, \geq 99.5%, Sinopharm Chemical Reagent Co., Ltd, China). All reagents were used without any purifications. 1.2 Synthesis of MAI

MAI was prepared by mixing MA and HI solution. Add 33 mL MA solution and 19 mL HI solution into a 100 mL flask, and keep the mixture stirring for 2 h at 0 °C. The solution was evaporated at 50 °C to obtain the MAI crude product. The obtained white powder was washed several times with diethyl ether and placed in a vacuum oven (60 °C) overnight.

1.3 Preparation of Pt/MAPbI₃

Pt/MAPbI₃ composite was achieved via a photoreduction method. Specifically, 50 mg MAPbI₃ and 4 mg H₂PtCl₆ were added to the prepared MAPbI₃-saturated solution and then exposed to visible light irradiation ($\lambda \ge 420$ nm) for 2 h.

1.4 Characterization

Powder X-ray diffraction (XRD) of the samples was tested using an Ultima-IV Powder X-ray Diffraction (Rigaku, Japan) equipped with a Cu Kα incident source. The UV-vis diffuse reflectance spectra were measured using an ultraviolet-visible (UV-vis) spectrophotometer (UV2600) (Shimadzu, Japan) and BaSO₄ was used as a reflectance standard. The morphology of the products was characterized by scanning electron microscopy (SEM, FEI Inspect F50). Transmission electron microscopy (TEM) images were taken by a Tecnai G2 20 transmission electron microscope (FEI, USA) at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed with a Thermo Fisher Nexsa spectrometer with a Al K α X-ray radiation. The binding energies were calibrated using C1s peak (284.8 eV). The photoluminescence (PL) spectra were obtained by a Fluoromax-4 spectrofluorometer spectrometer (Horiba, Japan) with an excitation wavelength of 500 nm. Zeta potentials were measured with a NanoBrook Omni zeta potential analyzer (Brookhaven, USA).

1.5 Electrochemical and photoelectrochemical measurements

All the electrochemical and photoelectrochemical tests were performed at the CHI-660D Electrochemical Workstation (Shanghai Chenhua). In a standard three-electrode system, a Pt sheet was used as the counter electrode and the saturated Ag/AgCl as the reference electrode. The electrolyte chosen was a dichloromethane solution of 0.1M tetrabutylammonium fluorophosphate (TBAPF₆). As for the fabrication of working electrode, the photocatalyst powder was ground with a drop of terpinol and smeared onto plasma-treated FTO conductive glass, then left to air dry naturally. Electrochemical impedance spectroscopy (EIS) was obtained with the test frequency range of 0.1 to 10^5 Hz. Current-voltage (I-V) curves were measured using linear sweep voltammetry (LSV) method with the scan rate of 10 mV s⁻¹. Photocurrent response curves were obtained by irradiating the working electrode at regular intervals, using a 300 W Xe-lamp with a 420 nm cut-off filter as the light source.

1.6 The calculation of Apparent Quantum efficiency (AQE):

The light intensity of irradiation at 450 nm was measured by an optical power meter (PL-MW2000, Perfectlight, Beijing). The measured light intensity (P) was 1.86 mW cm⁻². The irradiation area (S) was 28.26 cm² and the evolution amount of H_2 (n) in 4 h was 27.8 µmol:

$$AQE = \frac{2 \times \text{the number of evolved H}_2 \text{ molecules}}{\text{the number of incident photons}} \times 100\%$$
$$= \frac{2nNA}{PS\lambda/hc} \times 100\% = 1.96\%$$

2. Additional Data

Fig. S1 Zeta potentials of MAPbI₃ and NiCoB

Fig. S2 SEM image of MAPbI₃

Fig. S3 (a) SEM and (b) TEM images of NiCoB

Fig. S4 UV-vis absorption spectra of NiCoB, MAPbI₃ and MPB-4.

Fig. S5 Time-dependent photocatalytic H₂ production of MAPbI₃, Pt/MAPbI₃, and MPB-4.

Fig. S6 XRD patterns of the MPB-4 before and after being illuminated for 24 h of photocatalytic H_2 evolution.

Fig. S7 SEM and HRTEM images of the MPB-4 after being illuminated for 24 h of photocatalytic H_2 evolution.

Fig. S8 The Kubelka-Munk plot of MAPbI₃.

Fig. S9 Valence band XPS spectrum of MAPbI₃ powder.

Fig. S10 Mott-Schottky curve of the NiCoB

Catalysts	Reactant solution	Light source	H_2 evolution (µmol g ⁻¹ h ⁻¹)	Ref.
		300 W Xe lamp		
NiCoB/MAPbI3	HI/H ₃ PO ₂	(100 mW	2625.57	This
	solution	$cm^{-2}, \lambda \ge 420 nm)$		work
Pt/MAPbI ₃		300 W Xe lamp		
	HI/H ₃ PO ₂	(100 mW	124.22	This
	solution	cm ⁻² , $\lambda \ge 420$ nm)		work
MAPbI ₃ /RGO		300 W Xe lamp		
	HI/H ₃ PO ₂	(120 mW	939.00	1
	solution	$cm^{-2}, \lambda \ge 420 nm)$		
MAPbI ₃ /Pt		Solar simulator		
	HI/H ₃ PO ₂	(100 mW	57.00	2
	solution	cm^{-2} , $\lambda \ge 475 nm$)		
$CsPbBr_3 I_v/Pt$	HBr/HI/H ₃ PO ₂	300 W Xe lamp (1120.00	3

Table S1. The comparison of photocatalytic HER performance over the NiCoB/MAPbI₃ and other reported MAPbI₃-based photocatalysts.

	solution	$\lambda \ge 420 \text{ nm})$		
Pt/Ta ₂ O ₅ -		300 W Xe lamp		
MAPbBr ₃ -	HBr/H ₃ PO ₂	(150 mW	619.00	4
PEDOT:PSS	solution	$cm^{-2}, \lambda \ge 420 nm)$		
MAPbBr _{3-x} I _x /Pt	HBr/HI/H ₃ PO ₂	300 W Xe lamp (2604.80	5
	solution	$\lambda \ge 420 \text{ nm}$)		
		300 W Xe lamp		
MAPbI ₃ /Pt/TiO ₂	HI/H ₃ PO ₂	(200 mW	1987.00	6
	solution	$cm^{-2}, \lambda \ge 420 \text{ nm}$)		
$MAPb(I_{0.9}Br_{0.1})_{3}$	HBr/HI/H ₃ PO ₂	300 W Xe lamp (1471.00	7
	solution	$\lambda > 420 \text{ nm}$)		
		,		
$MAPb(I_{0.9}Br_{0.1})_3/Pt$	HBr/HI/H ₃ PO ₂	300 W Xe lamp (3348.00	7
(0.9 0.195	solution	$\lambda > 420 \text{ nm}$		
MAPbI ₂ /CoP	HI/H ₂ PO ₂	150 W Xe lamp (2087.50	8
	solution	$\lambda > 420 \text{ nm}$		
		300 W Xe lamp		
MAPbI ₃ /Ni ₃ C	HI/H ₃ PO ₂	(100 mW	2362.00	9
	solution	cm^{-2} , $\lambda \ge 420$ nm)		
		90 W LED lamp		
MAPbI ₃ /MoS ₂	HI/H ₃ PO ₂	(450 mW	2061.00	10
5 2	solution	cm ⁻² , 780 nm > λ >		
		380 nm)		
		300 W Xe lamp		
BP/MAPbI ₃	HI/H ₃ PO ₂	(100 mW	3742.0	11
5	solution	cm^{-2} , $\lambda \ge 420$ nm)		

References

- Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M.-H.
 Whangbo and B. Huang, *Adv. Mater.*, 2018, **30**, 1704342.
- S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn and K. T. Nam, *Nano Energy*, 2016, 2, 16185.
- Z. Guan, Y. Wu, P. Wang, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, M.-H.
 Whangbo and B. Huang, *Appl. Catal.*, *B*, 2019, **245**, 522-527.
- H. Wang, X. Wang, R. Chen, H. Zhang, X. Wang, J. Wang, J. Zhang, L. Mu, K. Wu, F. Fan, X. Zong and C. Li, ACS Energy Lett., 2019, 4, 40-47.
- Y. Wu, P. Wang, Z. Guan, J. Liu, Z. Wang, Z. Zheng, S. Jin, Y. Dai, M.-H. Whangbo and B. Huang, ACS Catal., 2018, 8, 10349-10357.
- X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang, Y. Zhao, X. Zong and C. Li, ACS Energy Lett., 2018, 3, 1159-1164.
- Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li, Z. Ye, S. Lu, X. Tao and C. Chen, *Appl. Catal.*, *B*, 2019, 253, 41-48.
- C. Cai, Y. Teng, J.-H. Wu, J.-Y. Li, H.-Y. Chen, J.-H. Chen and D.-B. Kuang, *Adv. Funct. Mater.*, 2020, **30**, 2001478.
- Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li and X. Tao, ACS Catal., 2019, 9, 8144-8152.
- 10. F. Wang, X. Liu, Z. Zhang and S. Min, Chem. Commun., 2020, 56, 3281-3284.
- R. Li, X. Li, J. Wu, X. Lv, Y.-Z. Zheng, Z. Zhao, X. Ding, X. Tao and J.-F. Chen, *Appl. Catal.*, *B*, 2019, **259**, 118075.