# **Supporting Information for**

### Self-supporting CoP-C nanosheet arrays derived from Metal-Organic

# Framework as synergistic catalysts for efficient water splitting

Min Wang<sup>a,b</sup>, Yuanzhuo Li<sup>a</sup>, Lingling Zhai<sup>b</sup>, Xiang Zhang<sup>a,\*</sup>, Shuping Lau<sup>b,\*</sup>

# 1. Experimental Procedures

**1.1 Chemicals:** Co(NO<sub>3</sub>)<sub>2</sub>6H<sub>2</sub>O, 1,4-benzene dicarboxylic acid, polyvinyl pyrrolidone (Mw =58000), DMF, EtOH, KOH, KSCN, 20% Pt/C and RuO<sub>2</sub> were purchased from Sigma Aldrich. NaH<sub>2</sub>PO<sub>2</sub> was used as the phosphorus source for phosphatization. Nickel foam (NF) with a thickness of 1.7 cm was purchased from Sigma Aldrich. 1 M KOH was purchased from Aladdin Ltd. (Shanghai, China). All chemicals were used as received without further purification. The ultra-pure water was purified through a Millipore system.

### **1.2 Synthesis Procedures**

### Synthesis of Ni<sub>2</sub>P/NF

Commercial NF was washed with 3 M HCl and EtOH three times. The fresh NF in porcelain was placed at the middle of the furnace, and  $NaH_2PO_2$  (0.5 g) in another porcelain boat was placed upstream of the furnace. The samples were heated at 300 °C for 1.5 h in the Ar atmosphere, with a ramping rate of 6 °C min<sup>-1</sup>. After cooling down, a Ni<sub>2</sub>P coating on the surface of NF (Ni<sub>2</sub>P/NF) was obtained.

### Synthesis of CoP-C/NF

The synthesized CoP-C/NiO/NF was further annealed for 1.5 h at 400 °C with a heat rate of 7 °C min<sup>-1</sup> under 5 % H<sub>2</sub> and 95 % Ar mixed atmosphere, and the total flow was about 70 mL min<sup>-1</sup>. After annealing, the NiO coating on the NF was converted into Ni (0), so a CoP-C nanosheet array supported by NF (CoP-C/NF) was obtained.

# Synthesis of CoP-C/Ni-P/NF

The synthesized  $Co_2(OH)_2(BDC)$  /NiO/NF was annealed for 1.5 h at 365 °C with a heat rate of 7 °C min<sup>-1</sup> under 5 % H<sub>2</sub> and 95 % Ar mixed atmosphere total flow was about 70 mL min<sup>-1</sup>. After annealing, the self-supporting complex was placed directly at the middle of a furnace, and NaH<sub>2</sub>PO<sub>2</sub> (0.6 g) in another porcelain boat was placed upstream of the furnace. Subsequently, the samples were heated at 350 °C for 1.5 h in the Ar atmosphere, with a ramping rate of 6 °C min<sup>-1</sup>. After phosphorization, the CoP-C nanosheet array supported by the Ni<sub>2</sub>P-Ni<sub>5</sub>P<sub>4</sub> coated NF (CoP-C/Ni-P/NF) was

obtained.

2. Figures and tables



**Fig. S1** XRD (a) SEM images under low magnification (b) and high magnification (c) of the pre-oxidized NF.

After oxidation, the surface of the NF becomes rough, although it seems smooth in a low magnification scanning electron microscopy (SEM) image. The X-ray diffraction (XRD) peaks at 37.4°, 43.3°, 61.8°, 75.4°, 79.3° correspond to NiO (JCPDS# 71-1179). Strong diffraction peaks at 44.5°, 51.8°, 76.3° index to the metallic nickel of NF (JCPDS# 04-0850). These results above hint towards the formation of NiO coating on the surface of NF (NiO/NF).



Fig. S2 The enlarged SEM image of  $Co_2(OH)_{2}(BDC)$  nanosheet on the NiO/NF



**Fig. S3** Characterization of the Co-CNT/NF: (a) XRD spectrum, (b) and (c) SEM images in different magnifications, (d)TEM image of Co-CNT nanosheet. Inset: lattice fringes of Co nanoparticles.



Fig. S4 SEM images of the  $Co_2(OH)_2(BDC)/NiO/NF$  after calcination at 350 °C (a) and 450 °C (b) under 5% H<sub>2</sub>-95% Ar mixed atmosphere for 1.5 h.



**Fig. S5** XRD pattern (a), SEM image (b) and TEM image (b) of the  $Co_2(OH)_2(BDC)$  nanosheet after calcination at 400 °C in pure Ar atmosphere.



Fig. S6 The spectrum to contrast the XRD pattern of CoP-CNT/Ni<sub>2</sub>P/NF and the standard card of metallic Co/Ni and CoO/NiO.



Fig. S7 TEM images of the CoP-CNT/Ni<sub>2</sub>P/NF: (a) CoP-CNT nanosheet, (b) CoP
NPs surrounded by CNTs in the nanosheet, (c) CoP NPs encapsulated by carbon layer.
(d) and (e) some irregular hollow CoP NPs in the nanosheet.



**Fig. S8** The spectrum to contrast the XRD pattern of CoP-C/NiO/NF and the standard card of metallic Co/Ni and CoO/NiO.



**Fig. S9** (a)TEM image of the CoP-C nanosheet in the CoP-C/NiO/NF. (b) and (c) the size distribution of the CoP nanorod. (d) HRTEM image of the CoP-C nanosheet in the CoP-C/NiO/NF (edge site)



**Fig. S10** The energy-dispersive X-ray spectroscopy elemental mapping images of CoP-C/NiO/NF.

 Table S1 The corronding elements ratio in CoP-C/NiO/NF calculated by EDS.

| Co (atom%) | P (atom %) | C (atom %) | O (atom %) | Ni  (atom %) |
|------------|------------|------------|------------|--------------|
| 5.96       | 14.11      | 23.49      | 30.94      | 25.50        |



Fig. S11 XPS survey spectra of the CoP-CNT/Ni<sub>2</sub>P/NF (a) and CoP-C/NiO/NF (b).

Fig. S11 shows characteristic peaks from outer electrons (s, p) and Auger electrons (LMM, KLL) of Ni, Co, O, C and P atoms in CoP-CNT/ Ni<sub>2</sub>P/NF and CoP-C/NiO/NF.



Fig. S12 (a) Low and high magnification (Inset) SEM image of  $Ni_2P/NF$ , (b) XRD pattern of  $Ni_2P/NF$ .

As shown in Fig. S12, the surface of NF seems smooth in the low magnification SEM image, while in the high magnification SEM image, a film of the  $Ni_2P$  on the NF could be observed. And XRD analysis proves the successful synthesis of  $Ni_2P$  on the surface of NF ( $Ni_2P/NF$ )



**Fig. S13** Cyclic voltammetry curves of the CoP-CNT/Ni<sub>2</sub> P/NF (a) and CoP-C/NiO/NF (b) at different scan rates from 20 mV s<sup>-1</sup> to 100 mV s<sup>-1</sup> in 1.0 M KOH solution. (c)The corresponding  $C_{dl}$  plots. (d) ECSA-normalized polarization curves of the CoP-CNT/Ni<sub>2</sub> P/NF and CoP-C/NiO/NF.



**Fig. S14** The LSV curve of the CoP-C/NiO/NF toward HER in 1.0 M KOH solution before and after 1000 cycles.



**Fig. S15** The SEM images of the CoP-CNT/NiO/NF catalyst after long-time electrolysis towards HER for 20 h in 1.0 M KOH.



**Fig. S16** The XPS spectrum of the CoP-C/NiO/NF catalyst after 20 h electrolysis toward HER in 1.0 M KOH solution: (a) survey -scan spectra (b) Co 2p (c) P 2p (d) C 1s (e) Ni 2p (f) O 1s.

**Table S2** Comparison of HER and OER performance of self -supporting CoP-C nanosheet arrays with some previously reported CoP-based catalysts in 1.0 M KOH solution.

|                                 | HER                    |                                        | OER                    |                                        |                                                 |
|---------------------------------|------------------------|----------------------------------------|------------------------|----------------------------------------|-------------------------------------------------|
| Catalyst                        | η <sub>10</sub><br>(mV | Tafel Slope<br>(mV dec <sup>-1</sup> ) | η <sub>10</sub><br>(mV | Tafel Slope<br>(mV dec <sup>-1</sup> ) | Reference                                       |
| CoP-C/NiO/NF                    | 72                     | 51                                     | 265                    | 65                                     | This work                                       |
| CoP-CNT/ Ni <sub>2</sub> P/NF   | 82                     | 62                                     | 253                    | 58                                     | This work                                       |
| 2D CoP@NC                       | 127                    | 58                                     | 300                    |                                        | ACS Catal. 2017, 7, 3824.                       |
| CoP@BCN                         | 215                    | 52                                     |                        |                                        | Adv. Energy Mater. 2017, 7, 1601671.            |
| NiO@NiCoP                       | 112                    | 56                                     |                        |                                        | Electrochim. Acta 2018, 292, 88.                |
| CoP/NPC/TF                      | 80                     | 50                                     |                        |                                        | Adv. Energy Mater. 2019, 9, 1803970.            |
| CoP/Co-MOF/CF                   | 34                     | 43                                     |                        |                                        | Angew. Chem., Int. Ed. 2019, 58, 4679.          |
| W-CoP NAs/CC                    | 94                     | 63                                     |                        |                                        | Small 2019, 15, 1902613.                        |
| CoP/Co <sub>2</sub> P@NC/Ti     | 49                     | 51                                     |                        |                                        | <i>I Sci.</i> <b>2020</b> , 101264.             |
| CoP-Ni <sub>2</sub> P           | 105                    | 64                                     | 320                    | 69                                     | ACS Appl. Mater. Interfaces 2017, 9, 23222.     |
| CoP/NCNHP                       | 115                    | 66                                     | 310                    | 70                                     | J. Am. Chem. Soc. 2018, 140, 2610.              |
| Holey Ni-Co-P nanosheet         | 58                     | 57                                     | 280                    |                                        | J. Am. Chem. Soc. 2018, 140, 5241.              |
| CoP(MoP)-CoMoO <sub>3</sub> @CN | 198                    | 95                                     | 296                    | 105                                    | ACS Appl. Mater. Interfaces 2019, 11, 6890.     |
| Co <sub>x</sub> P@NC            | 187                    | 58.5                                   | 380                    | 79.5                                   | Carbon 2019, 145, 694.                          |
| CoP@NPCP nanoplate              | 150                    | 20                                     | 421                    | 115                                    | Carbon 2019. 150. 446.                          |
| C-CoP nanocages                 | 173                    | 63.1                                   | 333                    | 71.1                                   | Nanoscale 2019, 11, 17084.                      |
| Ni <sub>2</sub> P@G             | 103                    | 56.5                                   | 275<br>(20)            | 56.2                                   | J. Mater. Chem. A 2019, 7, 13455.               |
| (FeNiP)/P-doped<br>graphene     | 173                    | 50.3                                   | 229                    | 49.7                                   | J. Mater. Chem. A 2019, 7, 14526.               |
| CoP/CN@MoS2                     | 149                    | 88                                     | 289                    | 69                                     | ACS Appl. Mater. Interfaces 2019, 11, 36649.    |
| Ce-CoP                          | 144                    | 70                                     | 270                    | 63                                     | ACS Sustain. Chem. Eng. <b>2020</b> , 8, 10009. |

| CoP -InNC@CNT                                             | 159         | 56   | 270         | 84   | Adv. Sci. 2020, 7, 1903195.                  |
|-----------------------------------------------------------|-------------|------|-------------|------|----------------------------------------------|
| Co-P@PC                                                   | 76          |      | 280         | 53   | Small <b>2020</b> , 16, 1900550.             |
| hcp-Co@NC                                                 | 90          | 90.7 | 290         | 71.2 | Appl.CatalB: Environ. 2020, 266, 118621.     |
| C@ Ni <sub>8</sub> P <sub>3</sub> /NF                     | 110         | 46   | 267         | 51   | ACS Appl. Mater. Interfaces 2016, 8, 27850.  |
| Co <sub>2</sub> P/Co foil                                 | 159         | 59   | 319         | 79   | J. Mater. Chem. A 2017, 5, 10561.            |
| CoO@CoNC @ NF                                             | 190         | 98   | 309         | 53   | <i>Chem</i> <b>2017</b> , <i>2</i> , 791.    |
| NiFe LDH@NiCoP/NF                                         | 120         | 88.2 | 220         | 48.6 | Adv. Funct. Mater. 2018, 28, 1706847.        |
| CoP NS/CC                                                 | 90          | 53.5 | 310         | 53.9 | J. Mater. Chem. A 2018, 6, 24277.            |
| WCoP @ (S, N)-C/CC                                        | 67          | 66   | 280         |      | ACS Energy Lett. 2018, 3, 1434.              |
| 2%Mo-Ni <sub>2</sub> P/CoP/NF                             | 118<br>(50) | 45.4 | 319<br>(50) | 46.1 | Appl. CatalB: Environ. 2020, 272, 118951.    |
| NiCoP/C nanobox                                           |             |      | 330         | 96   | Angew. Chem. Int. Ed. 2017, 56, 3897.        |
| CoPi-HSNPC-800                                            |             |      | 320         | 85   | ACS Sustain. Chem. Eng. 2019, 7, 13559.      |
| CoP-NC-CNT                                                |             |      | 251         | 82.1 | Carbon 2019, 141, 643.                       |
| NiCoP-O/NC nanosheets                                     |             |      | 300         | 94   | Nano Energy <b>2020</b> , <i>9</i> , 104453. |
| CoP/D-Co-Cu MOF                                           |             |      | 290         | 65   | J. Mater. Chem. A 2020, 8, 14099.            |
| C0 <sub>3</sub> O <sub>4</sub> @CoP /Ni foil              |             |      | 238         | 51.4 | Adv. Energy Mater. 2017, 7, 1602643.         |
| Co <sub>3</sub> O <sub>4</sub> @Ni <sub>2</sub> P-CoP /NF |             |      | 290<br>(50) | 75   | Electrochim. Acta 2019, 298, 525.            |
| CoS2@NGC@NF                                               |             |      | 243         | 71   | J. Mater. Chem. A 2020, 8, 6795.             |



**Fig. S17** Polarization curves of the CoP-CNT/Ni<sub>2</sub>P/NF and CoP-C/NiO/NF with and without the addition of 10 mmol KSCN toward HER in 1.0 M KOH.



Fig. S18 XRD pattern (a) and SEM image (b) of the CoP-C/Ni-P/NF.



Fig. S19 XRD pattern (a) and SEM image (b) CoP-C/NF.

As shown by the XRD pattern in Fig. S19, less NiO was resting on the surface of NF

in CoP-C/NF.



**Fig. S20** (a) polarization curves of the CoP-C/Ni-P/NF and CoP-C/NF toward HER in 1.0 M KOH solution at a scan rate of 5 mV s<sup>-1</sup>. (b) The histogram of the overpotential at j = 10 mA cm<sup>-2</sup> and corresponding Tafel slope for the synthesized Co-based catalysts toward HER in 1.0 M KOH solution.



Fig. S21 The LSV curve of the CoP-CNT/Ni<sub>2</sub>P/NF towards OER in 1.0 M KOH before and after 500 cycles.



**Fig. S22** SEM image of the CoP-CNT/Ni<sub>2</sub>P/NF catalyst after long-time electrolysis toward OER in 1.0 M KOH.



Fig. S23 (a-e) The XPS spectrum of the CoP-CNT/Ni<sub>2</sub>P/NF catalyst after long-time electrolysis towards OER in 1.0 M KOH. (f) Raman spectra of the CoP-CNT/Ni<sub>2</sub>P /NF before and post OER.



**Fig. S24** (a) Polarization curves of the CoP-C/Ni-P and CoP-C/NF towards OER in 1.0 M KOH at a scan rate of  $1 \text{mV} \text{ s}^{-1}$ . (b) The histogram of the overpotential at 50 mA cm<sup>-2</sup> and corresponding Tafel slope for the synthesized Co-based catalysts towards OER in 1.0 M KOH.

**Table S3** Comparison of overall water splitting performance of self-supporting CoP-C nanosheet arrays with some previously reported Co/Ni-based catalysts in 1.0 M KOH solution.

| Catalyst                       | Cell voltage                                           | Reference                                    |  |
|--------------------------------|--------------------------------------------------------|----------------------------------------------|--|
| Catalyst                       | ( <i>j</i> =10 mA cm <sup>-2</sup> , η <sub>10</sub> ) |                                              |  |
| CoP-C/NiO/NF    CoP-CNT/NiO/NF | 1.57 V                                                 | This work                                    |  |
| CoP/NCNHP                      | 1.64 V                                                 | J. Am. Chem. Soc. 2018, 140, 2610.           |  |
| Co/CoP-HNP                     | 1.68 V                                                 | Mater. Horiz. 2018, 5, 108.                  |  |
| Ni <sub>2</sub> P-NPCMS        | 1.62 V                                                 | Electrochim. Acta 2019, 297, 755             |  |
| Co-P@PC                        | 1.60 V                                                 | Small 2020, 16, 1900550.                     |  |
| CoP@a-CoOx                     | 1.66 V                                                 | Adv. Sci. 2018, 5, 1800514                   |  |
| C02P/M02C/M03-C03C@C           | 1.74 V                                                 | J. Mater. Chem. A 2018, 6, 5789.             |  |
| NiCoP@NiFe                     | 1.57 V                                                 | Adv. Funct. Mater. 2018, 28, 1706847.        |  |
| Ni <sub>2</sub> P/CoN-PCP      | 1.58 V                                                 | Chem. Commun. 2018, 54, 12101.               |  |
| CoP-InNC@CNT                   | 1.58 V                                                 | Adv. Sci. 2020, 7, 1903195.                  |  |
| Ni-Co-P/NF                     | 1.58 V                                                 | Nano Lett. 2016, 16, 7718.                   |  |
| 2D Fe-doped CoP arrays         | 1.60 V                                                 | Nano Energy 2017, 41, 583.                   |  |
| NiO/NF    Ni <sub>2</sub> P/NF | 1.70 V                                                 | Nanoscale 2017, 9, 4409.                     |  |
| Ni-Co-P-HNBs /NF               | 1.62 V                                                 | Energy Environ. Sci. 2018, 11, 872.          |  |
| NiCoP/NF@NC                    | 1.57V                                                  | ACS Appl. Mater. Interfaces 2018, 10, 41237. |  |
| WCoP @ (S, N)-C/CC             | 1.65 V                                                 | ACS Energy Lett. 2018, 3, 1434.              |  |
| CoNiP@CN/NF                    | 1.59 (ŋ <sub>30</sub> )                                | Appl. CatalB: Environ. 2019, 259, 118053.    |  |
| N-Co-Ni-P/NF    Fe-Co-OOH/NF   | 1.51 V                                                 | ACS Sustain. Chem. Eng. 2020, 8, 8949.       |  |
| NiCoP@NiMn/NF                  | 1.51 V                                                 | ACS Appl. Mater. Interfaces 2020, 12, 4385.  |  |
| 2%Mo-Ni <sub>2</sub> P/CoP/NF  | 1.57V                                                  | Appl. CatalB: Environ. 2020, 272, 118951.    |  |
| Co-NCNTFS/NF                   | 1.62 V                                                 | ACS Appl. Mater. Interfaces 2020, 12, 3592.  |  |