Supporting Information

Investigation on the Catalytic Behavior of one Novel Thulium-Organic Framework with Planar Tetranuclear {Tm₄} Cluster as Active Center for 5 Chemical CO₂ Fixation

Hongtai Chen,^a Zhengguo Zhang,^a Hongxiao Lv,^a Shurong Liu,^a and Xiutang Zhang*^a

^a Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China. E-mail: xiutangzhang@163.com

10

Contents

Table S1. Crystallographic data and refinement parameters of NUC-37.

Table S2. Selected bond lengths and angles of NUC-37.

- Table S3. Comparison of the catalytic activity of various MOFs for the cycloaddition reaction of CO₂ with styrene oxide.
- 5 Figure S1. The coordination mode of tetranuclear {Tm^{III}₄} cluster (a); the thulium-hydroxide structure (b); the coordination mode of H₅BDCP ligand.

Figure S2. TGA curve of as-synthesized (black) and activated (red) sample of NUC-37.

Figure S3. IR spectra of as-synthesized NUC-37.

- Figure S4 PXRD patterns of NUC-37 before and after activation.
- 10 Isosteric heat calculation.

Figure S5. N₂ absorption and desorption isotherms of NUC-37a at 77 K (insert: the pore size distribution).

Figure S6. Adsorption isotherm of CO₂ at 273K and 298K.

Figure S7. CO₂ adsorption heat calculated by the virial equation of NUC-37a.

Yield calculation based on the GC-MS analysis.

15 Figure S8-S12. The ¹H NMR spectrums of cycloaddition reaction products.

Figure S13. PXRD patterns of fresh and reused NUC-37a catalyst.

Figure S14. The hot filtration experiment of cycloaddition reaction catalysed by NUC-37a.

Complex	NUC-37				
Formula	C ₇₂ H ₆₄ N ₇ O ₃₅ Tm ₄				
Mr	2263.02				
Crystal system	hexagonal				
Space group	P6 ₃ /mcm				
a (Å)	22.120(4)				
b (Å)	22.120(4)				
c (Å)	38.202(8)				
α (°)	90				
β (°)	90				
γ (°)	120				
V(Å ³)	16188(7)				
Ζ	6				
Dcalcd(g·cm ⁻³)	1.393				
μ(mm ⁻¹)	3.326				
GOF	1.070				
$R_1[I \ge 2\sigma(I)]^a$	0.0379				
$wR_2[I \ge 2\sigma(I)]^b$	0.0969				
R_1^{a} (all data)	0.0497				
wR_2^b (all data)	0.1044				
R _{int}	0.1094				
${}^{a}R_{e} = \sum \left F_{e} \right \left F_{e} \right \left \sum F_{e} \right ^{b} wR_{e} = \left \sum w(F ^{2} - F ^{2}) \right \left \sum w(F^{2})^{2} \right ^{1/2}$					

Table S1. crystallographic data and refinement parameters of NUC-37.

Table S2. selected bond lengths and angles of NUC-37.

Table 52. selected bond lengths and angles of NOC-57.									
Tm1-O1#1	2.228(4)	Tm1-O1#2 2.228(4) Tm1-O3		2.202(4)					
Tm1-O3#3	2.202(4)	Tm1-O5#5	2.292(6)	Tm1-O5#4	2.292(6)				
Tm1-O1W	2.309(4)	Tm2-O2#1	2.323(4)	Tm2-O2#7	2.323(4)				
Tm2-O4	2.272(4)	Tm2-O4#8 2.273(4)		Tm2-O1W#8	2.312(2)				
Tm2-O1W	2.312(2)	Tm2-O6 2.326(6)		Tm2-O2W	2.552(8)				
O1#1-Tm1-O1#2	86.6(2)	O1#2-Tm1-O5#4 115.9(2) O1		O1#1-Tm1-O5#4	81.7(2)				
O1#1-Tm1-O5#3	115.9(2)	O1#2-Tm1-O5#3	O1#2-Tm1-O5#3 81.7(2) O1#2-Tm1-O1		79.72(12)				
O1#1-Tm1-O1W	79.72(12)	O3-Tm1-O1#2	89.76(17)	O3#5-Tm1-O1#1	89.76(17)				
O3#5-Tm1-O1#2	162.04(15)	O3-Tm1-O1#1	162.04(15)	O3-Tm1-O3#5	88.3(2)				
O3-Tm1-O5#3	80.8(2)	O3#5-Tm1-O5#3	115.5(2)	O3-Tm1-O5#4	115.5(2)				
O3#5-Tm1-O5#4	80.8(2)	O3-Tm1-O1W	82.32(14)	O3#5-Tm1-O1W	82.32(14)				
O5#3-Tm1-O5#4	50.2(4)	O5#3-Tm1-O1W	154.89(18)	O5#4-Tm1-O1W	154.89(18)				
O2#6-Tm2-O2#2	74.90(19)	O2#2-Tm2-O6	141.48(10)	O2#6-Tm2-O6	141.48(10)				
O2#6-Tm2-O2W	70.5(2)	O2#2-Tm2-O2W	70.5(2)	O4-Tm2-O2#2	82.16(16)				
O4#8-Tm2-O2#6	82.15(16)	O4#8-Tm2-O2#2	136.78(15)	O4-Tm2-O2#6	136.78(15)				
O4#8-Tm2-O4	90.7(2)	O4#8-Tm2-O1W	147.83(16)	O4#8-Tm2-O1W#8	92.31(14)				
O4-Tm2-O1W#8	147.82(16)	O4-Tm2-O1W	92.31(14)	O4-Tm2-O6	74.55(16)				
O4#8-Tm2-O6	74.55(16)	O4-Tm2-O2W	67.43(19)	O4#8-Tm2-O2W	67.43(19)				
O1W-Tm2-O2#2	75.30(13)	O1W#8-Tm2-O2#6	75.31(13)	O1W-Tm2-O2#6	115.80(15)				
O1W#8-Tm2-O2#2	115.80(15)	O1W#8-Tm2-O1W	69.01(15)	O1W#8-Tm2-O6	75.44(16)				
O1W-Tm2-O6	75.44(16)	O1W#8-Tm2-O2W	142.06(12)	O1W-Tm2-O2W	142.06(12)				
O6-Tm2-O2W	124.6(3)								
Symmetry transformations used to generate equivalent atoms: #1: 2-X,1-X+Y,3/2-Z; #2: 1+Y,+X,+Z; #3: 1-Y,+X-Y,+Z; #4:									
1+Y,1-X+Y,1-Z; #5: 1-Y,1-X,1-Z; #6: 2-X,1-X+Y,+Z; #7: +X,+Y,3/2-Z; #8: 1-Y,+X-Y,3/2-Z.									

Catalyst	Catalyst (mol%)	Time (h)	Pressure (MPa)	Temp. (°C)	Yield (%)	Ref.
Rh-PMOF-1	0.2	24	0.1	100	88	S 1
Zn-2PDC	0.49	3	1	80	89	S2
TCM-16 (Zr)	0.5	16	0.1	100	93	S3
$[Mn_5L(H_2O)_6 \cdot (DMA)_2]$	0.5	12	0.2	80	94	S4
JLU-MOF58 (Zr)	0.1	12	0.1	80	65	S5
Co ₆ (TATAB) ₄ (DABCO) ₃ (H ₂ O)	0.2	15	0.8	80	100	S6
{Ni(muco)(bpa)(2H ₂ O)}	0.5	12	0.8	80	81	S 7
ZnMOF-1-NH ₂	1	8	0.8	80	88	S 8
In ₂ (OH)(btc)(Hbtc) _{0.4} (L) _{0.6}	0.51	4	2	80	73	S9
NUC-37a	0.5	5	0.1	75	98	this work

Table S3. Comparison of the catalytic activity of various MOFs for the cycloaddition reaction of CO₂ with styrene oxide.

Figure S1. The coordination mode of tetranuclear $\{Tm^{III}_4\}$ cluster (a); the thulium-hydroxide structure (b); the coordination mode of H₅BDCP ligand (containing disordered C atoms) (c).

Figure S2. TGA curves of as-synthesized (black) and activated (red) sample of NUC-37.

Figure S4. PXRD patterns of NUC-37 before and after activation.

Isosteric Heat Calculation.

The Q_{st} value is a parameter that describes the average enthalpy of adsorption for an adsorbing gas molecule at a specific surface coverage and is usually evaluated using two or more adsorption isotherms collected at similar temperatures. The zero-coverage isosteric heat of adsorption is evaluated by first fitting the temperature-dependent isotherm data to a virial-type expression, which can be written 5 as:

$$lnP = lnN + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
(1)
$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$
(2)

Figure S5. N₂ absorption and desorption isotherms of NUC-37a at 77 K (insert: the pore size distribution).

Figure S6. Adsorption isotherm of CO₂ at 273K and 298K.

Figure S7. CO₂ adsorption heat calculated by the virial equation of NUC-37a.

Yield Calculation Based on the GC-MS Analysis

5

Gas chromatography mass spectrometry (GC-MS) analyses were performed on a time-of-flight Thermo Fisher Trace ISQ GC/MS instrument, the yield (%) was calculated based on the consumption of starting material using the equation:

$$Yield (\%) = \begin{pmatrix} \frac{area \ of \ reactant \ at \ 0 \ hour}{area \ of \ reactant \ at \ 0 \ hour} - \frac{area \ of \ reactant \ at \ any \ time}{area \ of \ interal \ standard \ at \ 0 \ hour} \end{pmatrix} \times 100\%$$

$$(3)$$

5

Figure S13. PXRD patterns of fresh and reused NUC-37a catalyst.

Figure S14. The hot filtration experiment of cycloaddition reaction catalysed by NUC-37a.

Reference

- (S1) J. Liu, Y. Z. Fan, X. Li, Y. W. Xu, L. Zhang and C. Y. Su, ChemSusChem, 2018, 11, 2340–2347.
- (S2) Y. Li, X. Zhang, J. Lan, D. Li, Z. Wang, P. Xu and J. Sun, ACS Sustainable Chem. Eng., 2021, 9, 2795–2803.
- (S3) G. Jin, D. Sensharma, N. Zhu, S. Vaesen and W. Schmitt, Dalton Trans., 2019, 48, 15487–15492.
- 5 (S4) W. Jiang, J. Yang, Y. Y. Liu, S. Y. Song and J. F. Ma, Chem. Eur. J., 2016, 22, 16991–16997.
- (S5) X. Sun, J. Gu, Y. Yuan, C. Yu, J. Li, H. Shan, G. Li and Y. Liu, Inorg. Chem., 2019, 58, 7480–7487.
- (S6) B. Ugale, S. Kumar, T. J. Dhilip Kumar and C. M. Nagaraja, Inorg. Chem., 2019, 58, 3925-3936.
- (S7) B. Ugale, S. S. Dhankhar and C. M. Nagaraja, Inorg. Chem., 2016, 55, 9757–9766.
- (S8) P. Patel, B. Parmar, R. I. Kureshy, N. H. Khan and E. Suresh, Dalton Trans., 2018, 47, 8041-8051.
- 10 (S9) L. Liu, S. M. Wang, Z. B. Han, M. Ding, D. Q. Yuan and H. L. Jiang, Inorg. Chem., 2016, 55, 3558–3565.