Supporting Information

Idiosyncratic recognition of Zn²⁺ and CN⁻ in environment and live cell imaging using Pyrazolyl-Hydroxy-Coumarin scaffold: Depiction of Luminescent Zn(II)-Metallocryptand

Sukanya Paul, Suvendu Maity, Satyajit Halder, Basudeb Dutta, Srikanta Jana, Kuladip Jana, Chittaranjan Sinha*

Sl. No.	Contents	Fig/Tables No.
1.	Experimental Section: Materials and Methods	
2.	Quantum Yield and Limit of detection Calculation	
3.	Solution for Spectral Measurement	
4.	¹ HNMR Spectrum (300 MHz) of the probe H_2L in DMSO-d ₆	Fig. S1
5.	¹³ CNMR Spectrum (75 MHz) of H_2L in DMSO-d ₆	Fig. S2
6.	ESI-MS Spectrum of H ₂ L	Fig. S3
7.	IR Spectrum of the probe H ₂ L	Fig. S4
8.	Crystal Data and Refined Parameters for H ₂ L	Table S1
9.	Crystal Data and Refined parameter for hexanuclear zinc complex [Zn ₆ L ₆]	Table S2
10.	Selected Bond length and Bond Angles of H ₂ L	Table S3
11.	Selected Bond Length and Bond angles for [Zn ₆ L ₆]	Table S4
12.	Solid State Emission Spectrum of H ₂ L (Inset: images)(λ_{ex} = 390 nm).	Fig. S5
13.	Detection limit of H_2L for Zn^{2+} sensing.	Fig.S6
14.	Detection limit of H ₂ L towards CN ⁻ sensing	Fig. S7
15.	Reported Zn ²⁺ and CN ⁻ selective probe with their LOD value	Table S5
16.	Job's Plot for stoichiometric binding to Zn ²⁺	Fig.S8
17.	Job's Plot for stoichiometry binding to CN ⁻ .	Fig. S9
18.	Interference Study on Zn ²⁺ Sensing.	Fig. S10
19.	Interference study on CN ⁻ Sensing.	Fig. S11
20.	¹ HNMR Spectra of Zn ²⁺ Complex	Fig. S12
21.	¹ HNMR Spectra of CN- Complex	Fig. S13
22.	UV-Vis Absorption Spectrum of $[Zn_6L_6]$ in (99:1, v/v) (HEPES Buffer, pH 7.5) medium.	Fig. S14
23.	Fluorescence Spectrum of $[Zn_6L_6]$ in (99:1, v/v) (HEPES Buffer, pH 7.5) medium.	Fig. S15

24.	IR Spectrum of Zn ²⁺ Complex.	Fig. S16
25.	IR spectrum of CN ⁻ Complex	Fig. S17
26.	ESI-MS of CN ⁻ Complex.	Fig. S18
27.	Optimized structure of H ₂ L, [Zn ₆ L ₆] and [L-CN ⁻]	Tables S6
28.	Bond Parameters from the optimized geometry of H ₂ L	Table S7
29.	Selected MO's of H ₂ L along with their energy.	Table S8
30.	Selected MO's of $[Zn_6L_6]$ with their energy state	Table S9
31.	Selected MO's of [L-CN-] complexes with their energy level.	Table S10
32.	TD-DFT transition of H_2L , $[Zn_6L_6]$ and $[L-CN^-]$ complex.	Table S11
33.	Microscopic images of MDA-MB 231 cells treated with Zn^{2+} (10µM) and CN-(10µM) after 30 min incubation period under bright, fluorescence and merged field.	Fig. S19
34.	H_2L Fluorescence emission fold induction in untreated MDA-MB 231 cells (Control), cells treated with H_2L (10 μ M), H_2L (10 μ M) + Zn^{2+} (10 μ M) after 30 min, 1h and 2h	Fig.S20
35.	H_2L Fluorescence emission fold induction inuntreated MDA-MB 231 cells (Control), cells treated with H_2L (10 μ M), H_2L (10 μ M) + Cyanide (10 μ M) after 30 min, 1h	Fig. S21
36.	References	

Experimental Section

Materials and Methods

All the reagents of analytical grade (A.R) were collected from the commercial suppliers and used without further purification. 3-Amino-5phenyl pyrazole, Resorcinol, Ethylacetoacetate, Hexamine were purchased from Sigma-Aldrich. Inorganic salts and other organic chemicals (ZnCl₂, CdCl₂, HgCl₂, CuCl₂.2H₂O₂ CoCl₂.6H₂O₂ PbCl₂ AlCl₃ CaCl₂.6H₂O₂ FeCl₃.6H₂O₂ BaCl₂.2H₂O₂NiCl₂.6H₂O₂ NaCl,MnCl₂.4H₂O PdCl₂ CrCl₃.6H₂O KCl, MgCl₂Na₂S₂O₃.5H₂O, K₃PO₄, NaCl, NaF, NH₄HF₂ KNO₃, KBr, NaNO₂, NaN₃, CH₃COONa, KIO₃ Na₄P₂O₇KI,Na₂SO₄ Na₂S, Na₂S₂O₅ C₄H₉N(CN)) were bought from TCI chemicals and Merck. For spectroscopic measurement UV graded solvents spectroscopic were used. The solvents were dried by standard procedure for spectroscopic studies.¹Milli-Q water (Millipore) has been used for preparation of aqueous solutions of metal salts. Perkin-Elmer (2400 Series-II, Perkin Elmer, USA) CHN analyzer has been used for elemental analysis purpose. The spectra were recorded by Lambda 25 spectrophotometer: UV-Vis; LS55: fluorescence and LX-1FTIR spectrophotometer: FT-IR spectra (KBr disk, 4000-400 cm⁻¹) on Perkin Elmer instruments. ¹H and ¹³C NMR spectra were taken by Bruker 300 MHz FT-NMR spectrometer. The chemical shift (δ) of the respective NMR spectra were recorded in parts per million (ppm) with respect to trimethylsilaneas internal standard. ESI-MS spectra were obtained from HRMS spectrometer (model, XEVO-G2QTOF#YCA351).

Quantum Yield and Limit of detection Calculation

Fluorescence quantum yields (Φ) were obtained by using the equation:

$$\Phi_{\text{sample}} = (\text{OD}_{\text{std.}} \times \text{A}_{\text{sample}}) / (\text{OD}_{\text{sample}} \times \text{A}_{\text{std.}}) \times \Phi_{\text{std.}}$$

Where, A_{sample} and A_{std} represent the areas under the fluorescence spectral curves for sample and standard respectively. OD_{sample} and OD_{std} represents the optical densities of the sample and standard respectively at the excitation wavelength.³ In this work, acidic quinine sulfate (0.1(N) H₂SO₄ solution) was taken as the

standard with known quantum yield, Φ std. = 0.54 for the quantum yield calculation of ligand HL and the complex with Zn²⁺ and CN⁻.

LOD determination was calculated from fluorescence Titration Experiment on gradual addition of Zn^{2+} and CN^{-} ion to the solution of ligand HL. Standard Deviation measured from emission intensity of ligand with addition of varying concentration of Zn^{2+} and CN^{-} . Limit of Detection for Zn^{2+} and CN^{-} determined from the equation $LOD = (3\sigma/Slope)$ where σ represents standard deviation and m is the slope acquired from the plot of fluorescence titration experiment.

Solution for Spectral Measurement

For UV-Vis and Fluorescence study, the ligand H_2L with concentration of 1x 10⁻³(M) was prepared in DMSO. All the cationic and anionic solutions of 1 x 10⁻³(M) were arranged in deionized water. The Spectroscopic experiment was carried out in acetonitrile medium. A 25 μ M of HL solution was prepared in2 mL CH₃CN/H₂O (99:1, v/v) (HEPES Buffer, pH 7.5) for sensing study. To this solution 1 equivalent of metal cations were added and the sensitivity and selectivity was checked by UV-vis and Fluorescence measurement of the probe HL solution. The absorption and emission path length of cell used were 1 cm. fluorescence measurement experiments were done on excitation and emission of 12 nm x 7 nm (For Zn²⁺) and 12 nm x 3 nm (For CN⁻) slit width.

Fig.S1.¹HNMR Spectrum (300 MHz) of the probe H₂L in DMSO-d₆

Fig.S2.¹³CNMR Spectrum (75 MHz) of H₂L in DMSO-d₆

Fig. S3. ESI-MS Spectrum of H₂L

Fig.S4. IR Spectrum of the probe H_2L

Empirical formula	C ₂₀ H ₁₅ N ₃ O ₃
CCDC No.	2109503
Formula weight	345.35
Temperature (K)	273(2)
System	Monoclinic
Space group	P 21/c
a (Å)	11.8984(10)
b (Å)	12.8002(10)
c (Å)	11.1706(9)
α/°	90
β/°	101.831(2)
γ/°	90
V (Å) ³	1665.2(2)
Ζ	4
D(cal) /g cm ⁻³	1.378
μ/mm^{-1}	0.095
$\lambda(\text{Å})$	0.71073
Data[I >2 σ (I)]/param	3676/237
$R_1^a[I>2\sigma(I)]$	0.0530
wR ₂ ^b	0.1595
GOF°	1.215

Table S1. Crystal Data and Refined Parameters for H_2L

Empirical formula	$C_{245.78}H_{168.66}N_{36}O_{39.78}S_{1.57}Zn_{12}$
CCDC No.	2109502
Formula weight	5097.43
Temperature (K)	100.4
System	Triclinic
Space group	P -1
a (Å)	17.5384(14)
b (Å)	17.6613(12)
c (Å)	24.5865(16)
α/°	97.163(2)
β/°	100.276(2)
γ/°	106.205(2)
V (Å) ³	7072.1(9)
Ζ	1
$D(cal)/g cm^{-3}$	1.197
μ/mm^{-1}	1.076
$\lambda(\text{\AA})$	0.71073
$Data[I > 2\sigma(I)]/param$	26162/1546
$R_1^a[I>2\sigma(I)]$	0.0612
wR ₂ ^b	0.1656
GOF ^c	1.043

Table S2: Crystal Data and Refined parameter for hexanuclear zinc complex [Zn₆L₆]

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; \quad {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}; \quad w = [\sigma^{2}(F_{o})^{2} + (0.1003P)^{2} + 4.9693P]^{-1} (F_{o}^{2} + 2F_{c}^{2}) / 3; \quad c \text{Goodness-of-fit.}$

Bond	Length (Ă)	Bond	Angle (°)
N(3)-H(3A)	0.86	N(3)-N(2)-H(3A)	123.2
N(3)-N(2)	1.345(2)	N(3)-N(2)-C(11)	103.60(16)
N(2)-C(11)	1.339(2)	N(2)-C(11)-N(1)	116.66(17)
C(11)-N(1)	1.401(2)	C(11)-N(1)-C(10)	120.49(16)
N(1)-C(10)	1.285 (2)	N(1)-C(10)-H(10)	120
C(10)-C(8)	1.452(2)	N(1)-C(10)-C(8)	119.72(17)
C(8)-C(7)	1.406 (2)	C(10)-C(8)-C(7)	121.75(15)
C(7)-O(3)	1.342(2)	C(8)-C(7)-O(3)	121.15(17)
O(3)-H(3)	0.82	С(7)-О(3)-Н(3)	109.5

Table S3: Selected Bond length (Å) and Bond Angles (°) of H_2L

Table S4: Selected Bond length (Å) and Bond Angles (°) for $[Zn_6L_6]$

Bond Length	Length (Ă)	Bond Length	Angle (°)
Zn(1)-O(1)	1.932(4)	Zn(4)-O(12)	1.945(3)
Zn(1)-N(12)	1.973(4)	Zn(4)-O(20)	2.539(4)
Zn(1)-N(13)	2.010(4)	Zn(4)-N(5)	2.087(4)
Zn(1)-N(18)	1.979(4)	Zn(4)-N(7)	1.983(4)
Zn(2)-O(6)	1.986(4)	Zn(4)-N(14)	2.007(4)
Zn(2)-O(19)	2.253(4)	Zn(5)-O(18)	1.960(4)
Zn(2)-N(1)	2.027(4)	Zn(5)-O(20)	2.360(4)
Zn(2)-N(4)	2.025(4)	Zn(5)-N(8)	2.023(4)
Zn(2)-N(16)	2.124(4)	Zn(5)-N(10)	2.126(4)
Zn(3)-O(13)	1.944(3)	Zn(5)-N(15)	2.012(4)
Zn(3)-O(19)	2.597(4)	Zn(6)-O(7)	1.938(3)

Zn(3)-N(2)	1.991(5)	Zn(6)-N(9)	2.001(4)
Zn(3)-N(3)	2.014(5)	Zn(6)-N(11)	1.983(4)
Zn(3)-N(6)	2.070(5)	Zn(6)-N(17)	1.985(4)

Bond Angles	Degrees(°)	Bond Angles	Degrees (°)	Bond Angles	Degrees
O1 - Zn1 - N12	118.25(16)	O1 - Zn1 - N13	92.96(16)	01 - Zn1 - N18	107.72(16)
N12 - Zn1 - N13	115.22(16)	N12 - Zn1 - N18	107.7(17)	N13 - Zn1 - N18	114.52(15)
O6 - Zn2 - O19	82.42(14)	06 - Zn2 - N1	113.83(16)	O6 - Zn2 - N4	134.84(15)
O6 - Zn2 - N16	86.57(14)	O19 - Zn2 - N1	86.31(15)	O19 - Zn2 - N4	81.62(15)
O19 - Zn2 - N16	167.20(14)	N1 - Zn2 - N4	107.03(16)	N1 - Zn2 - N16	104.21(16)
N4 - Zn2 - N16	101.32(19)	O13 - Zn3 - O19	77.46(15)	O13 - Zn3 - N2	126.67(17)
O13 - Zn3 - N3	111.32(16)	O13 - Zn3 - N6	90.47(15)	O19 - Zn3 - N2	76.26(17)
O19 - Zn3 - N3	82.44(17)	O19 - Zn3 - N6	167.36(17)	N2 - Zn3 - N3	110.20(16)
N2 - Zn3 - N6	108.78(16)	N3 - Zn3 - N6	105.81(17)	O12 - Zn4 - O20	77.26(15)
O12 - Zn4 - N5	89.82(15)	012 - Zn4 - N7	127.43(17)	012 - Zn4 - N14	111.09(19)
O20 - Zn4 - N5	165.09(17)	O20 - Zn4 - N7	74.55(15)	O20 - Zn4 - N14	83.57(17)
N5 - Zn4 - N7	108.47(16)	N5 - Zn4 - N14	108.56(16)	N7 - Zn4 - N14	108.64(16)
O18 - Zn5 - O20	80.48(13)	O18 - Zn5 - N8	115.94(16)	O18 - Zn5 - N10	87.83(15)
O18 - Zn5 - N15	130.84(16)	O20 - Zn5 - N8	82.63(14)	O20 - Zn5 - N10	168.04(14)
O20 - Zn5 - N15	82.70(15)	N8 - Zn5 - N10	105.00(15)	N8 - Zn5 - N15	107.12(16)
N10 - Zn5 - N15	103.34(17)	07 - Zn6 - N9	93.58(15)	07 - Zn6 - N11	110.73(15)
07 - Zn6 - N17	117.06(15)	N9 - Zn6 - N11	113.73(17)	N9 - Zn6 - N17	113.04(16)
N11 - Zn6 - N17	108.30(16)	Zn1 - O1 - C1	127.5(3)	Zn2 - O6 - C22	133.3(3)
Zn6 - O7 - C63	126.8(3)	Zn3 - O13 - C103	128.8(4)	Zn4 - O12 - C92	131.1(4)
Zn5 - O18 - C52	131.4(3)	Zn2 - O19 - Zn3	87.62(15)	Zn2 - O19 - C02S	123.7(3)

Zn3 - O19 - C02S -	128.1(3)	Zn4 - O20 - Zn5	87.89(15)	Zn4 - O20 - S1	118.2(2)
Zn5 - O20 - S1	139.3(2)	Zn2 - N1 - N2	120.4(3)	Zn2 - N1 - C12	126.8(3)
Zn3 - N2 - N1	112.8(4)	Zn3 - N2 - C14	137.7(3)	Zn3 - N3 - N4	119.8(4)
Zn3 - N2 - C14	137.7(3)	Zn3 - N3 - N4	119.8(4)	Zn3 - N3 - C89	126.9(3)
Zn2 - N4 - N3	115.2(3)	Zn2 - N4 - C81	135.8(3)	Zn3 - N6 - C101	124.1(4)
Zn3 - N6 - C112	119.2(3)	Zn4 - N7 - N8	113.9(3)	Zn4 - N7 - C72	135.8(3)
Zn5 - N8 - N7	121.5(3)	Zn5 - N8 - C80	128.0(3)	Zn6 - N9 - C61	124.0(3)
Zn6 - N9 - C80	117.0(4)	Zn5 - N10 - C49	120.6(3)	Zn5 - N10 - C50	123.9(4)
Zn6 - N11 - N12	123.9(3)	Zn6 - N11 - C49	125.9(4)	Zn1 - N12 - N11	115.9(3)
Zn1 - N12 - C41	134.0(4)	Zn1 - N13 - C11	124.4(3)	Zn1 - N13 - C12	116.4(3)
Zn4 - N14 - N15	123.1(4)	Zn4 - N14 - C112	126.3(3)	Zn5 - N15 - N14	113.5(3)
Zn5 - N15 - C114	137.7(3)	Zn2 - N16 - C31	126.0(4)	Zn2 - N16 - C32	120.1(3)
Zn6 - N17 - N18	114.6(3)	Zn6 - N17 - C34	134.5(4)	Zn1 - N18 - N17	126.0(3)
Zn1 - N18 - C32	124.8(4)	Zn2 - O19 - H19	119.8(2)	Zn3 - O19 - H19	98.8(2)

Fig. S5 Solid State Emission Spectrum of H_2L (Inset: images)(λ_{ex} = 390 nm).

Fig. S6 Detection limit of H_2L for Zn^{2+} sensing.

Fig. S7 Detection limit of H₂L towards CN⁻ sensing

Sl. No.	Probe	Selectivity (LOD)	Solvent	Reference
1.	F = F = F = F = F = F = F = F = F = F =	Zn ²⁺ (32 nM) CN ⁻ (13 nM)	CH₃CN	[4]
2.		Zn ²⁺ (0.87 μM) CN ⁻ (1.56 μM)	DMSO:H ₂ O (9:1)	[5]
3.	N HO HO OH	Zn ²⁺ (13 nM) Cu ²⁺ (1.6 μM) CN ⁻ (0.81 μM)	H ₂ O	[6]
4.		Zn ²⁺ (1.29 μM) CN ⁻ (12.3 μM)	DMF H ₂ O	[7]
5.		Zn ²⁺ (0.302 μM) CN ⁻ (0.153 μM)	DMSO	[8]

Table S5 : Reported Zn^{2+} and CN^{-} selective probe with their LOD value

6.	Zn ²⁺ (0.23 μM) CN ⁻ (0.39 μM)	H ₂ O	[9]
----	---	------------------	-----

Fig. S8 Job's Plot for stoichiometric binding to Zn^{2+}

Fig. S9 Job's Plot for stoichiometry binding to CN⁻.

Fig. S10 Interference Study on Zn²⁺ Sensing.

Fig. S11 Interference study on CN⁻ Sensing.

Fig. S12 ¹HNMR Spectra of Zn²⁺ Complex in DMSO-d₆

Fig. S13 ¹HNMR Spectra of CN⁻ Complex in DMSO-d₆.

Fig. S14 UV-Vis Absorption Spectrum of [Zn₆L₆] in (99:1, v/v) (HEPES Buffer, pH 7.5) medium.

Fig. S15 Fluorescence Spectrum of [Zn₆L₆] in (99:1, v/v) (HEPES Buffer, pH 7.5) medium.

Fig. S16 IR Spectrum of Zn²⁺ Complex.

Fig. S17 IR spectrum of CN⁻ Complex

Fig. S18 ESI-MS of CN⁻ Complex.

Tables S6: Optimized Geometry of H₂L, [Zn₆L₆] and [L-CN⁻]

Table S7: Calculated Bond Parameters obtained from DFT calculation of the optimized geometry of H₂L

Table S8: Selected MO's of H₂L along with their energy.

Table S9: Selected MO's of [Zn₆L₆] Complex with their energy state

Table S10: Selected MO's of L-CN⁻ complexes with their energy level.

System	Excitation	Exp.	Theor.	Oscillation	Key Transition
	Energy (eV)	Wavelength	Wavelength	Frequency	
		(nm)	(nm)		
H ₂ L	3.9591	316	313.16	0.8159	HOMO-2→LUMO
$[Zn_6L_6]$	3.2772	339	378.32	0.0018	HOMO-1→LUMO
	3.0436	412	407.05	0.0509	HOMO-1→LUMO+1
[L-CN ⁻]	3.3103	379	374.55	0.3658	HOMO-1→LUMO

Table S11: TD-DFT transition of H₂L, [Zn₆L₆] and [L-CN⁻] complex.

Fig. S19 Microscopic images of MDA-MB 231 cells treated with $Zn^{2+}(10\mu M)$ and $CN^{-}(10\mu M)$ after 30 min incubation period under bright, fluorescence and merged field.

Fig. S20 H₂L Fluorescence emission fold induction in untreated MDA-MB 231 cells (Control), cells treated with H₂L (10 μ M), H₂L (10 μ M) + Zn²⁺ (10 μ M) after 30 min, 1h and 2h

Fig. S21 H₂L Fluorescence emission fold induction inuntreated MDA-MB 231 cells (Control), cells treated with H₂L (10 μ M), H₂L (10 μ M) + Cyanide (10 μ M) after 30 min, 1hr.

References:

- 1. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, U.K., 1980.
- 2. D. Maiti, A. S. M. Islam, M. Sasmal, C. Prodhan and M. Ali, Photochem. Photobiol.Sci., 2018, 17, 1213-1221
- 3. A. Samui, K. Pal, P. Karmakar and S. K. Sahu, Mater. Sci. Eng. C, 2019, 98, 772-781.

4. W. Gao, H. Li, Y. Zhang, S. Pu., Tetrahedron. 2019,75, 2538-2546

- 5. K.Rezaeian, H. Khanmohammadi and A.Talebbaigy, Anal. Methods, 2020, 12, 1759
- 6. Q. Niu, T. Sun, T. Li, Z. Guo, H. Pang Sens. Actuators B, 2018, 266, 730-743
- 7. J. M. Jung, D. Yun, H. Lee, K.T. Kim, C. Kim, Sens. Actuators B, 2019, 297, 126814
- 8. T. Anand, A. K. SK, and S. K Sahoo, ChemistrySelect, 2017, 2, 7570 7579
- 9. M. Karimi, A.Badiei, G. M.Ziarani, Inorg. Chim. Acta, 2016, 450, 346-352.