Supporting Information

Ba₂B₅O₈(OH)₂(NO₃)·3H₂O: the synthesis of an alkaline earth

borate-nitrate optimized from a hydroxylic borate

Huaiyu Hu,^{a,b} Junben Huang,^a Zhiyong Guo,^c Min Zhang,^{*, a,b} Zhihua Yang,^{a,b} Shilie Pan^{*, a,b}

- a. CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. E-mail: zhangmin@ms.xjb.ac.cn (M. Zhang), slpan@ms.xjb.ac.cn (S. L. Pan)
- b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
- c. Xuchang Quality and Technical Supervision, Inspection and Testing Center, National Quality Supervision and Inspection Center for Ceramic Products of China, West Section of Longxing Road, Dongcheng District, Xuchang, Henan

Atom	x	<i>y</i>	z	U(eq)	BVS		
Bal	0.95251(8)	0.28847(2)	0.93260(6)	0.01464(16)	2.22		
Ba2	0.54796(9)	0.45620(2)	0.74455(6)	0.01891(17)	2.07		
B1	0.0652(14)	0.3674(4)	0.5984(11)	0.0138(18)	3.02		
B2	0.7834(16)	0.4332(5)	0.4549(11)	0.0160(19)	3.12		
B3	0.4005(14)	0.3075(4)	0.6975(11)	0.0123(18)	3.01		
B4	0.7003(14)	0.3309(4)	0.5705(10)	0.0112(17)	2.98		
B5	0.4423(15)	0.2476(4)	0.9592(11)	0.0133(18)	3.03		
N1	1.1519(15)	0.4465(4)	1.0110(12)	0.034(2)	4.99		
O1	-0.0002(9)	0.4199(3)	0.5238(8)	0.0204(14)	1.79		
O2	0.9793(12)	0.1829(3)	0.7564(8)	0.0265(15)	1.94		
O3	-0.0707(9)	0.3228(2)	0.6177(7)	0.0121(11)	2.08		
O4	0.6459(9)	0.3897(3)	0.5006(7)	0.0150(12)	1.88		
O5	0.2741(8)	0.3620(3)	0.6499(7)	0.0143(12)	2.00		
O6	0.6168(9)	0.3237(3)	0.7118(6)	0.0129(12)	1.99		
O7	0.3395(9)	0.2402(3)	1.0778(7)	0.0137(12)	1.96		
08	0.3529(8)	0.2870(3)	0.8460(6)	0.0122(12)	1.96		
09	0.7277(10)	0.4921(3)	0.5094(8)	0.0209(14)	2.06		
O10	0.6245(9)	0.2189(3)	0.9581(7)	0.0140(12)	2.03		
O11	0.6379(11)	0.3759(3)	1.0085(8)	0.0279(16)	1.93		
012	1.3045(13)	0.4703(4)	0.9758(9)	0.0389(19)	2.07		
O13	0.7552(12)	0.4339(4)	0.2836(8)	0.0292(16)	1.53		
O14	0.6489(15)	0.6446(4)	0.7659(11)	0.047(2)	2.45		
015	1.1043(14)	0.4627(4)	1.1384(9)	0.043(2)	1.70		
O16	1.0463(16)	0.4103(4)	0.9245(10)	0.050(2)	2.03		

Table S1. The final atomic coordinates and equivalent isotropic displacement parameters for $Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O$, U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the Bond Valence Sum for each atom in the asymmetric unit.

Ba1-O3#1	2.842(6)	Ba2-O4	2.788(6)
Ba1-O3#2	2.974(6)	Ba2-O5	2.780(6)
Bal-O6	2.747(6)	Ba2-O6	2.994(6)
Ba1-O7#1	2.831(6)	Ba2-O9#4	2.818(6)
Ba1-O8#1	2.913(5)	Ba2-O9	2.712(7)
Bal -O2	2.832(7)	Ba2-O11	2.886(7)
Ba1-O2#3	2.884(7)	Ba2-O12#5	2.941(8)
Ba1-O10	2.716(6)	Ba2-O12#6	2.864(7)
Bal-Oll	3.023(7)	Ba2-O13#4	3.136(8)
Bal-O16	2.774(8)	Ba2-O15#5	2.939(9)
B1-O3	1.374(10)	B3-O5	1.481(11)
B1-O5	1.372(11)	B3-O6	1.460(11)
B1-O1	1.360(11)	B3-O8	1.476(10)
B2-O4	1.441(11)	B3#3-O7	1.487(11)
B2-O9	1.465(12)	B4-O4	1.452(10)
B2-O13	1.478(12)	B4-O6	1.470(10)
B2#6-O1	1.469(12)	B4-O3#1	1.502(10)
B5-O7	1.368(11)	B4-O10#8	1.497(11)
B5-O8	1.364(11)	B4#6-O3	1.502(11)
B5-O10	1.368(11)	B4#3-O10	1.497(11)
N1-O12	1.237(12)	N1-O15	1.276(12)
N1-O16	1.222(12)	O5-B1-O3	122.8(8)
O1-B1-O3	121.5(8)	O1-B1-O5	115.7(7)
O4-B2-O9	106.8(7)	O4-B2-O1#1	111.9(7)
O4-B2-O13	109.7(8)	O9-B2-O1#1	109.6(8)
O9-B2-O13	109.6(7)	O1#1-B2-O13	109.1(7)
O5-B3-O7#8	108.9(7)	O6-B3-O5	108.2(7)
O6-B3-O7#8	110.8(7)	O6-B3-O8	112.8(7)
O8-B3-O5	106.7(7)	O8-B3-O7#8	109.3(7)
O4-B4-O3#1	111.9(7)	O4-B4-O6	110.5(7)
O4-B4-O10#8	111.2(7)	O6-B4-O3#1	106.9(6)
O6-B4-O10#8	110.0(7)	O10#8-B4-O3#1	106.0(6)
O8-B5-O7	114.9(8)	O8-B5-O10	123.0(8)
O10-B5-O7	122.1(8)	O12-N1-O15	117.7(9)
O16-N1-O12	121.3(10)	O16-N1-O15	121.0(10)

Table S2. Bond lengths (Å) and angles (°) for $Ba_2B_5O_8(OH)_2(NO_3) \cdot 3H_2O$

Symmetry transformations used to generate equivalent atoms:

#1 1+x,+y,+z; #2 1+x,1/2-y,1/2+z; #3 +x,1/2-y,1/2+z; #4 1-x,1-y,1-z; #5 2-x,1-y,2-z; #6 -1+x,+y,+z; #7 -1+x,1/2-y,-1/2+z; #8 +x,1/2-y,-1/2+z; #8 +x,1/2-z; #8 +x,1/2+z; #8 +x,1/2+x; #8 +x,1/2+z; #8

Empirical formula	$Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O \qquad \qquad Ba_2B_5O_8(OH)_2OH^{[b]}$		
Formula weight	606.80	507.7480	
Temperature	301.0	Room temperature	
Crystal system,	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	
space group			
Unit cell	a = 6.6406(6),	a = 6.713(2),	
dimensions			
	$b = 22.157(2)$ Å, $\beta = 101.980(4)^{\circ}$	$b = 16.480(5)$ Å, $\beta = 106.80(3)^{\circ}$	
	c = 8.7863(6),	c = 8.387(3),	
Volume	1264.60(19) Å ³	888.3(5) Å ³	
Z, Calculated	4, 3.187 g·cm ⁻³	4,3.80 g·cm ⁻³	
density			
Absorption	6.287 mm^{-1}	/	
coefficient			
<i>F</i> (000)	1120.0	/	
Theta range for	1.84 to 27.51°	/	
data collection			
Limiting indices	$-8 \le h \le 8, -25 \le k \le 28, -11 \le l \le 11$	/	
Reflections	12257 / 2904[R(int) = 0.0818]	/	
collected / unique			
Completeness	99.6%	/	
Data / restraints /	2904/11/232	/	
parameters			
Goodness-of-fit on	1.079	/	
F ²			
Final R indices	$R_1 = 0.0398, wR_2 = 0.0899$	/	
$[Fo^2 > 2\sigma(Fo^2)]^{[a]}$			
R indices (all	R1 = 0.0502, $wR2 = 0.1012$	/	
data) ^[a]			
Largest diff. peak	1.46 and -1.33e·Å ⁻³	/	
and hole			

Table S3. crystal data and structure refinement for $Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O$ and $Ba_2B_5O_8(OH)_2OH$

 $[a]R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2)$

[b]O. Ferro, S. Merlino, S. A. Vinogradova, D. Y. Pushcharovsky and O. V. Dimitrova, J. Alloys Compd., 2000, 305, 63-71.

Type of the element	The formula of the compound	B-O anion framework	ICSD No. or reference
Alkali metal	K ₃ Na[B ₆ O ₉ (OH) ₃]NO ₃	Isolated [B ₆ O ₉ (OH) ₃] ³⁻	427967
	Na ₃ (NO ₃)[B ₆ O ₁₀]	${}^{3}{}_{\infty}[B_{6}O_{10}]^{2}$	97687
	$Na_{3-x} K_{x} [B_{6}O_{10}]NO_{3} (x = 0.5, 0.6, 0.7)$	³ _∞ [B ₆ O ₁₀] ²⁻	432294-432296
	M ₃ B ₆ O ₁₀ (NO ₃)(M=K,Rb)	${}^{3}{}_{\infty}[B_{6}O_{10}]^{2}$ -	[a]
	$Cs_3B_8O_{13}NO_3$	${}^{3}{}_{\infty}[B_8O_{13}]^{2}$	[b]
	$Ce[B_5O_8(OH)(H_2O)]NO_3 \cdot H_2O$	$^{2}_{\infty}[B_{5}O_{8}(OH)(H_{2}O)]^{2}$	262731
	La[B ₅ O ₈ (OH)]NO ₃ ·2H ₂ O	$^{2}_{\infty}[B_{5}O_{8}(OH)]^{2}$	426014
	$La[B_5O_8(OH)H_2O]NO_3^{}\cdot 2H_2O$	${}^{2}{}_{\infty}[B_{5}O_{8}(OH)(H_{2}O)]^{2}$	[c]
sarias matals	$Lu_2B_2O_5(NO_3)_2$ ·2H ₂ O	Isolated [B ₂ O ₅] ⁴⁻	430158
series metals	Pr[B ₅ O ₈ (OH)(H ₂ O) _{0.87}]NO ₃ ·2H ₂ O	${}^{2}_{\infty}[B_{5}O_{8}(OH)(H_{2}O)_{0.87}]^{2}$	433274
	$RE[B_5O_8(OH)(H_2O)_x]NO_3 \cdot 2H_2O$	² [R O (OH)(H O) 1 ² -	431164
	[RE = Nd (x = 0.85), Sm (x = 0)]	$-\infty[B_5O_8(OH)(H_2O)_x]^2$	
Np	$K_2[(NpO_2)_3B_{10}O_{16}(OH)_2(NO_3)_2]$	² _∞ [B ₅ O ₈ (OH)] ²⁻	168519
	$[Pb_6 (\mu_4 - O)_4 (BO_3)](NO_3)$	Isolated [BO ₃] ³⁻	[d]
РЬ	$H[Pb_{6} (\mu_{3} - O)_{2} (BO_{3})_{2}](NO_{3})_{3}$	Isolated [BO ₃] ³⁻	[d]
	$H[Pb_{8} (\mu_{4} \text{-}O)_{3} (\mu_{3} \text{-}O)(BO_{3})_{2}](NO_{3})_{3}$	Isolated [BO ₃] ³⁻	[d]
	Pb ₂ (BO ₃)(NO ₃)	Isolated [BO ₃] ³⁻	428943
	[Pb ₃ (B ₃ O ₇)](NO ₃)	Isolated [B ₃ O ₇] ⁵⁻	250750
Co,Ni,Cu,Zn,Cd	M ₃ B ₇ O ₁₃ (NO ₃)	${}^{3}{}_{\infty}[B_{7}O_{13}]^{5}$	[e]
		Isolated [B ₁₈ O ₂₄ (OH) ₉] ³⁻ And H ₃ BO ₃ 766	
	$K_7Ni[B_{18}O_{24}(OH)_9](NO_3)_6 \cdot (H_3BO_3)$		
	$Cd_{3}[B_{6}O_{9}(OH)_{2}]_{2}.2NO_{3}\cdot 4H_{2}O$	² _∞ [B ₆ O ₉ (OH) ₂] ²⁻	18367

Table S4. All of the borate-nitrates up till now

[a] Q. Q. Zhang, F. F. Zhang, F. M. Li, S. J. Han, Z. H. Yang and S. L. Pan, Eur. J. Inorg. Chem., 2021, 1297-1304

[b] Z. L. Chen, C. F. Wu, H. Zeng and F. Yu, *Dalton Trans.*, 2021, **50**, 8676-8679.

[c] L. Y. Li, G. B. Li, F. H. Liao and J. H. Lin, Acta Phys. -Chim. Sin., 2005, 21, 769-773.

[d] J. L. Song, X. Xu, C. L. Hu, F. Kong and J. G. Mao, CrystEngComm, 2015, 17, 3953-3960.

[e] T. A. Bither and H. S. Young, J. Solid State Chem., 1974, 10, 302-311.

Figure S1. The Ba-O layer of Ba₂B₅O₈(OH)₂(NO₃)·3H₂O

Figure S2. The B-O anions of Ba₂B₅O₈(OH)₂(NO₃)·3H₂O and $Ce[B_5O_8(OH)(H_2O)]NO_3 \cdot H_2O.$ (a)(d) the fundamental basic units, (b)(c) the ${}^{2}_{\infty}[B_{5}O_{8}(OH)_{2}]^{3}$ layer (e)(f) ²_∞[B₅O₈(OH)(H₂O)]²⁻ and the layer of Ba₂B₅O₈(OH)₂(NO₃)·3H₂O and Ce[B₅O₈(OH)(H₂O)]NO₃·H₂O, respectively.

Figure S3. (a) infrared spectra and (b) UV-Vis-NIR diffuse reflectance of $Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O$

Figure S4. (a) PXRD and (b) TG curves of $Ba_2B_5O_8(OH)_2(NO_3)\cdot 3H_2O$ at different temperatures.

Figure S5. The dihedral angles of the nonparallel arrangement $[NO_3]^-$ anions