Solution-Processed Light Induced Multilevel Non-volatile Wearable Memory Device Based on CsPb₂Br₅ Perovskite

Tufan Paul¹, Pranab Kumar Sarkar², Soumen Maiti³, Aditi Sahoo⁴ and Kalyan Kumar

Chattopadhyay^{1, 5, *}

¹ School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India.

² Department of Applied Science & Humanities, Assam University, Silchar, 788011, India.

³ St Thomas College of Engineering & Technology, Kolkata 700023, India.

⁴ CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032, India

⁵ Departments of Physics, Jadavpur University, Kolkata 700032, India.

*Corresponding author E-mail: kalyan_chattopadhyay@yahoo.com.

Figure S1: Schematic illustration of the device fabrication.

Figure S2: XRD profile of CsPb₂Br₅ is compared with pure CsPbBr₃ and CsPb2Br₅-CsPbBr₃.

Figure S3: Photoluminescence analysis of CsPb₂Br₅ is compared with pure CsPbBr₃ and CsPb2Br₅-CsPbBr₃.

Figure S4: UV-vis absorbance and PL spectra of the CsPb₂Br₅.

Figure S6: Schematic diagram of the designed memory device.

Figure S7: Forming process of the Al/CsPb₂Br₅/ITO device.

Figure S8: Performance comparison with CsPbBr₃

Figure S9: Statistical distribution of (a) the switching voltage (b) LRS and HRS for various Al/CsPb₂Br₅/ITO memory cells.

Figure S10: I-V curve of the Al/CsPb₂Br₅/ITO/PET device after 1 month.

Table S1: Comparison of perovskite-based resistive memory devices with the proposed devi
--

Sl.	Material	Device Structure	SET/RE	On/off	Endurance	Bending	Ref.
No			SET	ratio	(Cycle)	cycle	
•			Voltage				
1	CsPbBr ₃	Al/CsPbBr ₃ /PEDOT:	-0.6/1.7	102	50	100	1
		PSS/ITO/PET					
2	CsBi ₃ I ₁₀	Al/CsPbBr ₃ / ITO	-1.7/0.9	103	150	-	2
		substrate					
3	CsPb _{1-x} Bi	Ag/CsPb _{1-x} Bi _x I ₃ /ITO	-3.6/4	10 ²	500	-	3
	_x I ₃						
4	MA ₃ Bi ₂ I ₉	Au/MA3Bi2I9/ITO	-0.6/1.5	10 ²	300	-	4
5	MAPbI _{3-x}	Au/MAPbI _{3-x} Cl _x /FT	0.9/-0.65	10	100	-	5
	Cl _x	0					
6	MAPbI ₃	Au/MAPbI ₃ /ITO/PET	0.7/-0.5	10	400	-	6
7	Cs ₄ PbBr ₆	Au/Cs ₄ PbBr ₆ /PEDOT			100		7
		:PSS/ITO					
8	CsPb ₂ Br ₅	Al/CsPb ₂ Br ₅ /ITO/PE	2.5/-2	10	100	500	This
		T					work

References

1. D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, and W. Hu, ACS applied materials & interfaces, 2017, 9, 6171-6176.

2. Z. Xiong, W. Hu, Y. She, Q. Lin, L. Hu, X. Tang, and K. Sun, ACS applied materials & interfaces, 2019, 11, 30037-30044.

3. S. Ge, Y. Wang, Z. Xiang, Y. Cui, ACS Appl. Mater. Interfaces, 2018, 10, 24620-24626

4. B. Hwang, J.S. Lee, Nanoscale, 2018, 10, 8578-8584

5. E.J. Yoo, M. Lyu, J.H. Yun, C.J. Kang, Y.J. Choi, and L. Wang, *Advanced Materials*, 2015, **27**, 6170-6175.

6. C. Gu, and J.S. Lee, J.S. ACS nano, 2016, 10, 5413-5418.

7. R. Chen, J. Xu, M. Lao, Z. Liang, Y. Chen, C. Zhong, L. Huang, A. Hao, and M. Ismail, *Physica status solidi (RRL)–Rapid Research Letters*, 2019, **13**, 1900397.