Enhancement of thermoelectric properties of Zintl phase SrMg$_2$Bi$_2$

by Na-doping

Fang Yua, Xiang Mengb,*, Lu Lib, and Cuilian Wenc,**

aInstitute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.

bSchool of Material Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China

cCollege of Materials Science and Engineering, Fuzhou University, Xueyuan Road, Fuzhou 350108, China

*Email: xiang.meng@hotmail.com (X. Meng); clwen@fzu.edu.cn (C. Wen)

The single parabolic band (SPB) model:
The Seebeck coefficient:

$$ S(\eta) = \frac{k_B}{e} \left[\frac{(r + 5/2)F(r + 3/2)(\eta)}{(r + 3/2)F(r + 1/2)(\eta)} - \eta \right] $$

The Hall carrier concentration:

$$ n_H = \frac{1}{eR_H} \frac{(2m^*k_BT)^{3/2}(r + 3/2)^2F(r + 1/2)(\eta)}{3\pi^2h^3 (2r + 3/2)F(2r + 1/2)(\eta)} $$

The Hall mobility:

$$ \mu_H = \left[\frac{\pi \hbar^4}{\sqrt{2(k_BT)^3/m^*}} \right] \frac{m^*E_{def}^2}{m_1^*} \frac{C_1}{C_1} \left[\frac{(2r + 3/2)F(2r + 1/2)(\eta)}{(r + 3/2)F(r + 1/2)(\eta)} \right] $$

Lorenz Factor:

$$ L = \frac{k_B}{e} \left[\frac{(r + 7/2)F(r + 5/2)(\eta)}{(r + 3/2)F(r + 3/2)(\eta)} \right] \left[\frac{(r + 5/2)F(r + 3/2)(\eta)}{(r + 3/2)F(r + 1/2)(\eta)} \right] $$

Where $F_j(\eta) = \int_0^\infty \frac{\xi f(\xi - \eta)}{1 + \exp(\xi - \eta)} d\xi$ is the Fermi integral, $m^* = \frac{k_B^2}{2e^2} \left[\frac{n \times r_H}{4mF_{1/2}(\eta)} \right]^{2/3}$ is the density-of-states effective mass.

In the above equations, k_B is the Boltzmann constant, h is the reduced Plank constant, C_1 is the elastic constant for longitudinal vibrations, E_{def} is the deformation potential coefficient characterizing the strength of carriers scattered by acoustic phonons, m^*_I is the inertial effective mass, m^*_b is the band effective mass and η is the reduced Fermi level. When charge carriers are scattered by the acoustic phonons, $r=-1/2$.

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021
Figure S1 XRD patterns for SrMg₂Bi₂ kept in air for 0 and 1 day.