Supporting Information For:

Self-assembly of non-macrocyclic triangular Ni₃Ln clusters

Tyson N. Dais,[†] Rina Takano,[‡] Takayuki Ishida,[‡] and Paul G. Plieger^{*†}

† School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.

‡ Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.

* E-mail: p.g.plieger@massey.ac.nz

Table of Contents

Table S1.	2
Table S2.	3
Table S3.	3
Table S4.	4
Fitting parameters, A and B, for the van Vleck equation used to fit $\chi_m T$ vs T plot for	or C34
Figure S1.	5
Figure S2.	5
Figure S3.	6
Figure S5.	7
Figure S6.	7
Figure S7.	8
Figure S8.	8
Figure S9.	9
Figure S10.	9
Figure S11.	9
Figure S12.	
Figure S13.	
Figure S14.	

Complex	C1	C2	C3	C4
Deposition number	2116396	2116398	2116399	2116397
Molecular formula	$\mathrm{C}_{38}\mathrm{H}_{46}\mathrm{LaN}_{3}\mathrm{Ni}_{3}\mathrm{O}_{33}$	$C_{37.5}H_{36}EuN_{3}Ni_{3}O_{28.5}$	$C_{45}H_{54}GdN_3Ni_3O_{30}\\$	$BaC_{43}H_{52}N_2Ni_3O_{28}\\$
Formula weight	1387.82	1312.78	1450.29	1358.33
Temperature /K	100	100	100	100
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_{1}/n$	C2/c	$P2_{1}/n$	PĪ
a /Å	10.4295(8)	12.7986(12)	17.0721(10)	11.0862(6)
b /Å	19.2819(15)	16.5467(16)	18.7861(11)	15.5290(9)
c /Å	24.0313(18)	39.9720(4)	17.1302(10)	16.8872(9)
α /°	90	90	90	115.311(4)
β /°	102.277(3)	90.203(3)	106.716(3)	101.491(4)
γ /°	90	90	90	97.235(4)
Volume /Å ³	4722.2(6)	8464.9(14)	5261.8(5)	2501.3(3)
<i>Z</i> / <i>Z</i> '	4 / 1	8 / 1	4 / 1	2 / 1
$\rho_{calc}/g \text{ cm}^{-3}$	1.952	2.06	1.831	1.804
μ /mm ⁻¹	9.197	12.934	10.111	8.159
F(000)	2800	5256	2932	1376
Crystal size /mm	$0.24 \times 0.18 \times 0.04$	$0.18 \times 0.14 \times 0.10$	$0.23 \times 0.10 \times 0.10$	$0.21 \times 0.20 \times 0.16$
Radiation	CuK_{α} ($\lambda = 1.54178$)	CuK_{α} ($\lambda = 1.54178$)	CuK_{α} ($\lambda = 1.54178$)	CuK_{α} ($\lambda = 1.54178$)
20 range /°	5.93 to 136.49	4.42 to 136.46	6.44 to 136.48	6.03 to 136.48
Reflections collected	28526	129662	143215	68979
Independent reflections	8337	7697	9641	8850
Restraints/parameters	4 / 730	14 / 682	70 / 799	21 / 678
GooF on F ²	1.081	1.046	1.025	1.056
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0580,$ $wR_2 = 0.1659$	$R_1 = 0.0249,$ $wR_2 = 0.0674$	$R_1 = 0.0232,$ $wR_2 = 0.0607$	$R_1 = 0.0771,$ $wR_2 = 0.1548$
Final R indices [all data]	$R_1 = 0.060^{7},$ $wR_2 = 0.1719$	$\kappa_1 = 0.0250,$ $wR_2 = 0.0675$	$\kappa_1 = 0.0242,$ $wR_2 = 0.0613$	$\kappa_1 = 0.1034,$ $wR_2 = 0.1672$
Residual density / e ⁻ Å ⁻³	1.92/-2.27	0.68/-0.72	0.76/-0.57	1.23/-1.28

Table S1. Crystal structure and refinement details for complexes C1 - C4. CCDC deposition numbers2116396 - 2116399.

Distance / Å	C1	C2	C3	C4	Ni ₃ DyL' ₃	Ni ₃ YbL' ₃
Ln ^{III} – O _{phenol}	2.544(4) – 2.597(4)	2.473(2) – 2.543(2)	2.493(2) – 2.525(2)	2.686(6) – 2.752(6)	2.478(3) – 2.500(4)	2.449(5) – 2.478(6)
Ln ^{III} – O _{nitrate}	2.614(4) – 2.658(4)	2.487(2) – 2.555(2)	2.455(2) – 2.516(2)	2.824(8) – 3.306(7)	2.459(5) – 2.514(5)	2.404(7) – 2.463(7)
$Ln^{III} - O_{water}$	2.515(4)	—	_	2.881(9)		—
$Ni^{II} - O_{phenol}$	1.978(4) – 2.003(4)	1.963(2) – 1.999(2)	1.962(2) – 1.993(2)	1.990(6) – 2.015(6)	1.961(4) – 1.988(4)	1.961(6) – 1.982(5)
$Ni^{II} - O_{formyl}$	1.983(4) – 2.016(4)	1.981(2) - 2.008(2)	1.975(2) - 2.023(2)	1.990(6) – 2.013(6)	2.004(4) - 2.017(4)	2.000(7) - 2.011(6)
Ni ^{II} – O _{water}	2.073(4) – 2.169(4)	2.076(2) – 2.167(2)		2.067(6) – 2.112(6)		1.983(16) - 2.080(30)
$Ni^{II} - O_{methanol}$	2.098(4)	—	2.061(2) – 2.120(2)	2.068(7) – 2.099(7)	2.050(5) – 2.098(6)	2.055(7) - 2.237(15)
Av. Ni ^{II} ··· Ni ^{II}	6.339(2)	6.276(1)	6.296(1)	6.404(3)	6.364(3)	6.342(3)
Av. Ni ^{II} ···· Ln ^{III}	3.670(2)	3.625(1)	3.636(1)	3.761(2)	3.675(3)	3.662(3)
Min. Ln ^{III} … Ln ^{III}	9.160(1)	9.767(1)	10.216(1)	10.430(1)	9.912(2)	9.900(2)
Angle / °						
$Ni^{II} - O - Ln^{III}$	105.6(2) – 107.3(2)	106.2(1) – 108.7(1)	106.1(1) – 108.9(1)	102.6(2) – 105.4(2)	109.8(2) – 110.9(2)	110.2(2) – 111.2(2)

Table S2. Selected distances and angles for C1 - C4.

Table S3. List of π — π interactions with centroid-centroid distances and angles, as calculated by Olex2. The second plane in each row corresponds to a symmetry generated molecule.

Complex	Planes	d _{centroid-centroid} /Å	Angle /°
C1 -	<pre>(C1, C2, C3, C4, C5, C6) (C25, C26, C27, C28, C29, C30)</pre>	3.519	5.130
	(C41, C42, C43, C44, C45, C50) (C25, C26, C27, C28, C29, C30)	3.597	4.422
	(C41, C42, C43, C44, C45, C50) (C45, C46, C47, C48, C49, C50)	3.668	8.272
	(C21, C22, C23, C24, C25, C30) (C25, C26, C27, C28, C29, C30)	3.820	3.426
	(C1, C2, C3, C4, C5, C10) (C25, C26, C27, C28, C29, C30)	3.885	18.729
	(C41, C42, C43, C44, C45, C50) (C41, C42, C43, C44, C45, C50)	3.960	8.900
C3 -	(C1, C2, C3, C4, C5, C10) (C5, C6, C7, C8, C9, C10)	3.606	5.855
	⟨C5, C6, C7, C8, C9, C10⟩ ⟨C5, C6, C7, C8, C9, C10⟩	3.723	0.000
C4	<pre> (C1, C2, C3, C4, C5, C10) (C25, C26, C27, C28, C29, C30)</pre>	3.580	3.674
	(C21, C22, C23, C24, C25, C30) (C25, C26, C27, C28, C29, C30)	3.714	4.300

	М	J(S)	g_J (calc.)	$\chi_{\rm m}T$ / ci	n ³ K mol ⁻¹ (calc.) M	$I_{sat} / \mu_{\rm B}$ (calc.)
	Ni ^{II}	1	2	1.000	2	
	EuIII	0	-	0	0	
	$\mathrm{Gd}^{\mathrm{III}}$	7/2	2	7.875	7	
Complex	$\chi_{\rm m}T/{\rm cm}$	³ K mol ⁻¹ (ca	lc.) χ _m	Per molecule T (calc.)	e	M_{sat} / $\mu_{\rm B}$ (calc.)
C2	7.57 (5000 Oe) 7.49 (500 Oe) 7.49 (500 Oe, in eicosane)		3.0 ane)	00	8.07 (1.8 K, in eicosane)	6
C3	12.68 (5000 Oe) 12.45 (500 Oe) 12.40 (500 Oe, in eicosane)		sane)	.88	13.66 (1.8 K, in eicosane)	14

Table S4. Calculated high-temperature-limit values per ion and per molecule for C1 - C3.

Fitting parameters, A and B, for the van Vleck equation used to fit $\chi_m T$ vs T plot for C3

Α	$= 3exp(-48J/k_B) + 30exp(-45J/k_B) + 105exp(-40J/k_B) + 60$ + 315exp(-30J/k_B) + 504exp(-27J/k_B) + 495exp(-24J/k_B) + + 990exp(-18J/k_B) + 1485exp(-14J/k_B) + 858exp(-13J/k_B)
В	$= exp(-48J/k_B) + 2exp(-45J/k_B) + 3exp(-40J/k_B) + 4exp(-3 (2)) + 8exp(-27J/k_B) + 5exp(-24J/k_B) + 12exp(-23J/k_B) + 4exp(-3) + (-14J/k_B) + 6exp(-13J/k_B) + 12exp(-7J/k_B) + 7$

Figure S1. X-ray crystal structure showing the full asymmetry unit of C1. Thermal ellipsoids of metal atoms shown at the 70% probability level. C = grey, O = red, N = blue, H-bonds = yellow.

Figure S2. X-ray crystal structure showing the full asymmetry unit of **C2**. Thermal ellipsoids of metal atoms shown at the 70% probability level. C = grey, O = red, N = blue, H-bonds = yellow.

Figure S3. X-ray crystal structure showing the full asymmetry unit of C3. Thermal ellipsoids of metal atoms shown at the 70% probability level. C = grey, O = red, N = blue, H-bonds = yellow.

Figure S4. X-ray crystal structure showing the full asymmetry unit of C4. Thermal ellipsoids of metal atoms shown at the 70% probability level. C = grey, O = red, N = blue, H-bonds = yellow.

Figure S5. X-ray crystal packing diagram (3x3x3) of C1.

Figure S6. X-ray crystal packing diagram (3x3x3) of C2.

Figure S7. X-ray crystal packing diagram (3x3x3) of **C3**.

Figure S8. X-ray crystal packing diagram (3x3x3) of C4.

Figure S9. Simulation of the $\chi_m T(T)$ and M(H) data on C1 for optimization of D with $g_{Ni} = 2.30$.

Figure S10. Simulation of the $\chi_m T(T)$ and M(H) data on C1 for optimization of j_{Ni-Ni} with $g_{Ni} = 2.30$.

Figure S11. Simulation of the $\chi_m T(T)$ and M(H) data on C1 with $2j_{Ni-Ni} = -0.6$ K, D = 7 K, and $g_{Ni} = 2.30$.

Figure S12. Simulation of the $\chi_m T(T)$ and M(H) data on C3 for optimization of J and j_{Ni-Ni} with $g_{Gd} = 2.00$ and $g_{Ni} = 2.36 - 2.30$.

Figure S13. Simulation of the $\chi_m T(T)$ and M(H) data on C3 with 2J = 1.6 K, $2j_{Ni-Ni} = -0.8$ K, D = 9 K, $g_{Gd} = 2.00$, and $g_{Ni} = 2.36$.

Figure S14. AC magnetic susceptibilities (in-phase χ ' and out-of-phase χ '') measured for C3. The applied dc bias fields (0, 1000, and 2000 Oe) are indicated. Lines are shown as a guide to the eye.