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1. Ligands
1.1 L2 (Molecular Structure in the Solid State; NMR Spectra (*H, 13C{*H}, 3'P{*H}, H-H COSY,
TH-13C HMBC, H-13C HSQC, *H-H NOESY))
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Scheme S1. Synthesis of ligand L2.

Figure S1. Molecular structure of ligand L2 (hydrogen atoms are omitted for clarity; thermal ellipsoids are set at the 50%
probability level).
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Figure S2. *'H NMR spectrum of ligand L2 in CDsCN at 25 °C.
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Figure S3. 13C{*H} NMR spectrum of ligand L2 in CDsCN at 25 °C.
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Figure S4. 31P{*H} NMR spectrum of ligand L2 in CDsCN at 25 °C.
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Figure S5. *H-'H COSY spectrum of ligand L2 in CD3CN at 25 °C.
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Figure S6. *H-13C HSQC spectrum of ligand L2 in CD3CN at 25 °C.
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Figure S7. 'H-13C HMBC spectrum of ligand L2 in CDsCN at 25 °C.
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Figure S8. *H-'H NOESY spectrum of ligand L2 in CD3CN at 25 °C.
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1.2 L3 (NMR Spectra (*H, 3C{*H}, 3'P{'H}, 'H-1H COSY, *H-13C HMBC, H-3C HSQC, *H-H
NOESY))
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Scheme S2. Synthesis of ligand L3.
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Figure $9. 'H NMR spectrum of ligand L3 in CDCls at 25 °C.
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Figure S10. 13C{*H} NMR spectrum of ligand L3 in CDCls at 25 °C.
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Figure S11. 31P{*H} NMR spectrum of ligand L3 in CDCl; at 25 °C.
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Figure S12. 'H-'H COSY spectrum of ligand L3 in CDCl; at 25 °C.
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13C HSQC spectrum of ligand L3 in CDCls at 25 °C.
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Figure S14. *H-13C HMBC spectrum of ligand L3 in CDCl; at 25 °C.
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Figure S15. 'H-'H NOESY spectrum of ligand L3 in CDCls at 25 °C.
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1.3 L5 (Molecular Structure in the Solid State; NMR Spectra (*H, 13C{*H}, 3'P{*H}))
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Scheme S3. Synthesis of ligand L5.
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Figure S16. Molecular structure of L5 (hydrogen atoms are omitted and tert-butyl groups are drawn as wireframes for
clarity; thermal ellipsoids are set at the 50% probability level).
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Figure S17. 'H NMR spectrum of ligand L5 in CDCl; at 25 °C.
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Figure $18. 3C{*H} NMR spectrum of ligand L5 in CDCls at 25 °C.
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Figure $19. 3P{*H} NMR spectrum of ligand L5 in CDCl; at 25 °C.
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2. Monometallic Pd Complexes

2.1 PdL2 (NMR Spectra (*H, B3C{*H}, 3'P{H}, H-1H COSY, *H-13C HMBC, *H-13C HSQC))
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Scheme S4. Synthesis of PdL2.
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Figure $20. 'H NMR spectrum of PdL2 in DMSO-d at 25 °C.
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Figure $21. 3C{*H} NMR spectrum of PdL2 in DMSO-ds at 25 °C.
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Figure $S22. 3'P{*H} NMR spectrum of PdL2 in DMSO-d; at 25 °C.

=
=
=

Y

uﬁ‘n

il

.

.

[ f
=

i

o
b

8.8 8.6 84 8.2 8.0 7.8 76 7.4 Pz 7.0 6.8
ppm

Figure $23. *H-'H COSY spectrum of PdL2 in DMSO-ds at 25 °C.
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Figure $24. *H-13C HSQC spectrum of PdL2 in DMSO-ds at 25 °C.
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Figure $25. *H-13C HMBC spectrum of PdL2 in DMSO-d at 25 °C.
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2.2 PdL3’ (Molecular Structure of PdL3’ and [PdCI(L3’)]-HCl in the Solid State; NMR Spectra
(*H, 3C{*H}, >*P{*H}, TH-'H COSY, 'H-'3C HMBC, 'H-13C HSQC, *H-H NOESY))
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NP P'Bu, 1) [PACI,(COD)] N I
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Scheme S5. Synthesis of PdL3’.

Figure S26. Molecular structure of PdL3’-CHCl5-2H,0 (solvent molecules and hydrogen atoms are omitted and tert-butyl
groups are drawn as wireframes for clarity; thermal ellipsoids are set at the 50% probability level).
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Figure S27. Molecular structure of [PdCI(L3’)]-HCI (hydrogen atoms (except H1) are omitted and
tert-butyl groups are drawn as wireframes for clarity; thermal ellipsoids are set at the 50% probability level)
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Figure $28. 'H NMR spectrum of PdL3’ in CDCls at 25 °C.
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Figure S29. 1*C{*H} NMR spectrum of PdL3’ in CDCl; at 25 °C.
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Figure $30. 3'P{*H} NMR spectrum of PdL3’ in CDCl; at 25 °C.
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Figure S31. 'H-'H COSY spectrum of PdL3’ in CDCl; at 25 °C.
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Figure $32. *H-13C HMBC spectrum of PdL3’ in CDCls at 25 °C.
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Figure $33. 'H-13C HSQC spectrum of PdL3’ in CDCls at 25 °C.
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Figure S34. 'H-'H NOESY spectrum of PdL3’ in CDCl; at 25 °C.

20

ra.5



2.3 PdLS’ (NMR Spectra (H, 13C{*H}, 3!P{tH}))
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Figure $35. *H NMR spectrum of PdL5’ in CDCls at 25 °C.
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Figure $36. 13C{*H} NMR spectrum of PdL5’ in CDCl; at 25 °C.
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Figure $37. 3'P{*H} NMR spectrum of PdL5’ in CDCls at 25 °C.
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3. Monometallic Mn and Co Complex
3.1 MnL4 (Synthesis; NMR Spectra (*H, °F{*H}))

| X
N = |
1) MnCl, N
Sy EOHm3h ] N T | ~
| 2) 2 Ag(OTY) N— i —N =
N CH3CN,tt, 12 h
| TfO OTf
N~
L4 MnL4

Scheme S7. Synthesis of MnL4.

MnCl, (148 mg, 1.18 mmol, 1.00 eq.) and L4 (250 mg, 1.18 mmol, 1.00 eq.) were dissolved in EtOH
(30 mL). The orange solution was stirred for 3 h at room temperature forming an orange precipitate.
The solid was filtered off, washed with EtOH (2 x 20 mL) and dried in vacuo to give [MnCl;(L4)] as an
orange solid (304 mg, 76%). Ag(OTf) (464 mg, 1.81 mmol, 2.01 eq.) and CHsCN (20 mL) were added to
[MnCIl;(L4)]. The mixture was stirred for 12 h at room temperature. The orange solution was filtered
over Celite, and the solvent was removed in vacuo. The orange solid was washed with Et,0 (10 mL)
and n-pentane (10 mL). The solid was dried under vacuum at 40 °C for 3 h to give MnL4 as an orange
solid (410 mg, 81%). Elemental analysis: C1aH12FsMnN4O¢S,, calculated (%): C 29.74, H 2.14, N 9.91,
found (%): C 29.66, H 1.82, N 10.08. HRMS (ESI pos., CH3CN): m/z calculated for [M—CF3SOs]*: 415.996,
found: 415.993 (100%); calculated for [[M],—CF3SOs]*: 980.944, found: 980.940 (50%). Selected ATR-
IR: ¥ (cm™) = 3045 (w, vC-H), 1604 (m, vC=N/vC=C), 1476 (m, vC=C), 1440 (m, vC=C), 1210 (s, vsCFs),
1163 (s, VasCFs), 1027 (s, vsSO3). *H NMR (400 MHz, CDsCN): & (ppm) = 14.9 (br). Due to the
paramagnetic Mn" centre, some protons were not observed in the *H NMR spectrum. **F{*H} NMR
(377 MHz, CDsCN): 6 (ppm) = -55.7 (br).
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Figure $39. °F{*H} NMR spectrum of MnL4 in CDsCN at 25 °C.

24



3.2 Col4 (Synthesis; NMR Spectra (*H, *°F{*H}))

| X
N = |
1) CoCly-6H,0 N
Xy EOH.m3h N T | N
| 2) 2 Ag(OTY) /N\/CO/N _
CHsCN,tt, 12 h
/ 3 b il
| N TfO oTf
N~
L4 ColL4

Scheme S8. Synthesis of ColL4.

A solution of CoCl,-6H,0 (710 mg, 3.00 mmol, 1.00 eq.) in EtOH (30 mL) was added dropwise to a
solution of L4 (640 mg, 3.00 mmol, 1.00 eq.) in EtOH (30 mL). The dark green solution was stirred for
3 h at room temperature. The green precipitate was filtered, washed with EtOH (2 x 20 mL) and dried
in vacuo to give [CoCl,(L4)] as a dark green solid (739 mg, 72%). Ag(OTf) (150 mg, 0.29 mmol, 2.01 eq.)
was added to a suspension of [CoCl;(L4)] (100 mg, 0.29 mmol 1.00 eq.) in CH3CN (10 mL). The mixture
was stirred for 12 h at room temperature. The orange solution was filtered over Celite, and the solvent
was removed in vacuo. The dark red solid was washed with CH,Cl; (5 mL), Et,O (5 mL) and n-pentane
(10 mL). The solid was dried under vacuum at 40 °C for 3 h to give Col4 as a dark red, hygroscopic solid
(134 mg, 81%). Elemental analysis: C14H12CoFgN4O6S,:2CH3CN-0.4CsH1,, calculated (%): C 35.31, H 3.38,
N 12.35, found (%): C 35.62, H 3.12, N 12.48. HRMS (ESI pos., CH3;CN): m/z calculated for [M—CF3SOs]*:
419.991, found: 419.990 (100%). Selected ATR-IR: ¥ (cm™) = 3068 (w, vC—H), 2963 (w, vC—H), 1601 (m,
vC=N/vC=C), 1470 (m, vC=C), 1440 (m, vC=C), 1238 (s, vasSO3), 1223 (s, vsCF3), 1145 (s, v2sCF3), 1026 (s,
vsS03). 'H NMR (400 MHz, CD3CN): § (ppm) = 11.53 (s, 1H), 10.90 (s, 3H), 3.54 (s, 1H). Due to the
paramagnetic Co" centre, some protons were not observed in the *H NMR spectrum. **F{*H} NMR
(377 MHz, CD3CN): & (ppm) = -78.5 (s).
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Figure $40. *H NMR spectrum of CoL4 in CD3CN at 25 °C.
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Figure $41. >F{*H} NMR spectrum of CoL4 in CDsCN at 25 °C.
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4. Heterobimetallic Pd Complexes
4.1 CoPdL2 (NMR Spectra (*H, *°F{*H}, 2*P{*H}))

X
N~ |
X N N/NWN\N =z
A ’Tl | et > | N l N| N /
Cl CHiCN, rt, 4 h NT=Co— """~
, I, Pd—PPh
| / TfO cl OTf 4
N._~N
N \Pld—Pth
PdL2 CoPdL2
Scheme S9. Synthesis of CoPdL2.
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Figure $42. 'H NMR spectrum of CoPdL2 in CD3CN at 25 °C.
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Figure S43. “>F{'H} NMR spectrum of CoPdL2 in CDsCN at 25 °C.
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4.2 MnPdL3’ (NMR Spectra (*H, *F{*H}, 31P{*H}))
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Scheme S10. Synthesis of MnPdL3’.
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Figure $45. 'H NMR spectrum of MnPdL3’ in CDsCN at 25 °C.
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Figure S46. °F{*H} NMR spectrum of MnPdL3’ in CDsCN at 25 °C.
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Figure S47. 3'P{*H} NMR spectrum of MnPdL3’ in CDsCN at 25 °C.
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4.3 CoPdL3’ (NMR Spectra (*H, PF{*H}, 3!P{*H}))

| N
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e AN N 25 N—2 _ ~.—N N
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Scheme S11. Synthesis of CoPdL3’.
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Figure S48. 'H NMR spectrum of CoPdL3’ in CDsCN at 25 °C.

31



=72.1

100 50 0 -50 -100
ppm

Figure $49. °F{*H} NMR spectrum of CoPdL3’ in CDsCN at 25 °C.
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Figure S50. 3'P{*H} NMR spectrum of CoPdL3’ in CDsCN at 25 °C.
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4.4 Dihedral Angle

Table S1. Dihedral angles [deg] between two planes formed by N1,N2,N4,M1 (M = Mn'", Co") and N5,N7/C15,P1,Pd1.

Complex Dihedral angle [deg]

[MnPdC,(OTf),(L1)] 1.2

[CoPdCl,(OTF)(L1)]5(OTH), 10.0

[CoPACly(CHsCN)(L2)]5(OT)s 2238

[MnPd(L3")(OTf)s(CHsCN)] 267

[COPd(L3")(OTf)s(CHsCN)] 2338
[MnPdCl,(OTf),(L1)]

N,N,P,Pdplane (blue)

1.2° <
N,N,N,Mn plane (red)

Figure S51. Molecular structure of complex [MnPdCl,(OTf),(L1)] (only the oxygen atoms of the triflate anions are shown;
solvent molecules and hydrogen atoms are omitted for clarity). The dihedral angle (1.2°) was determined between the two
planes of N,N,N,Mn (red) and N,N,P,Pd (blue).

[CoPdCl,(OTF)(L1)],(OTf),

N,N,N,Co plane (red)

10.0°__

=4
B o
=

N,N,P,Pd plane (blue)

Figure S52. Molecular structure of complex [CoPdCl,(OTf)(L1)]>(OTf), (only the monomer of the dimeric structure and oxygen
atoms of the coordinating triflate anions are shown; solvent molecules, noncoordinating triflate anions, and hydrogen atoms
are omitted for clarity). The dihedral angle (10.0°) was determined between the two planes of N,N,N,Co (red) and N,N,P,Pd
(blue).

33



[CoPdCl,(CH5CN)(L2)],(OTf),

N,N,N,Co plane (red)

22.8° ¢

N,N,P,Pd plane (blue)

Figure S53. Molecular structure of complex [CoPdCl,(CH3CN)(L2)]>(OTf)4 (only the monomer of the dimeric structure and
nitrogen atom of the coordinating CHsCN molecule are shown; solvent molecules, noncoordinating triflate anions, and
hydrogen atoms are omitted for clarity). The dihedral angle (22.8°) was determined between the two planes of N,N,N,Co (red)
and N,N,P,Pd (blue).

[MnPd(L3’)(OTf)5(CHCN)]

N,C,P,Pd plane (blue)

26.7°

N,N,N,Mn plane (red)

Figure S54. Molecular structure of complex [MnPd(L3’)(OTf)3(CH3CN)] (only the oxygen atoms of the coordinating triflate
anion and nitrogen atom of the coordinating CH3CN molecule are shown; solvent molecules and hydrogen atoms are omitted
for clarity). The dihedral angle (26.7°) was determined between the two planes of N,N,N,Mn (red) and N,C,P,Pd (blue).
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[CoPd(L3’)(OT)(CHCN)]

N,N,N,Co plane (red)

23.8° 4

N,N,P,Pd plane (blue)

Figure S55. Molecular structure of complex [CoPd(L3’)(OTf)3(CH3CN)] (only the oxygen atoms of the coordinating triflate anion
and nitrogen atom of the coordinating CH;CN molecule are shown; solvent molecules and hydrogen atoms are omitted for
clarity). The dihedral angle (26.7°) was determined between the two planes of N,N,N,Co (red) and N,C,P,Pd (blue).
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5. Catalysis

5.1 General Procedure
A mixture of bromobenzene (0.25 mmol, 1.0 eq.), phenylacetylene (0.38 mmol, 1.5eq.), base
(0.50 mmol, 2.0 eq.), precatalyst (0.015 mmol, 6 mol%) and dry, degassed solvent (1.0 mL) were
heated under Ar for 4-24 h. The reaction process was monitored by GC-MS. After full conversion of
bromobenzene, NHs-BH; (0.25 mmol, 1.0 eq.) was added, and the reaction was continued for 14-24 h
at 50 °C. The yields have been determined by GC-MS using naphthalene as an internal standard (4 pL
of the reaction solution have been diluted with 1.000 mL of a naphthalene stock solution in acetone).

5.2 Optimisation of the Reaction Conditions

Table S2. Optimisation of the reaction conditions for the Sonogashira cross-coupling reaction. A mixture of bromobenzene
(0.25 mmol, 1.0 eq.), phenylacetylene (0.38 mmol, 1.5 eq.), base (0.50 mmol, 2.0 eq.), precatalyst CoPdL3’ (0.015 mmol,
6 mol%) and dry, degassed solvent (1.0 mL) was heated under Ar for 4-24 h (DABCO = 1,4-diazabicyclo[2.2.2]octane; DIPEA =
N,N-diisopropylethylamine).

Or=O

CoPdL3' (6 mol%)
2.0 eq.base, solvent,

4-24 h, 70-110 °C

1 2a 3a
Entry Solvent Catalyst Base Amountof Temperature Yield® [%] Yield? [%]
loading Base [eq.] [°C] after4 h after 24 h
[mol%]
1 CHsCN 6 DABCO 2.0 90 99 99
2 CHsCN 6 K2,CO3 2.0 90 29 99
3 CHsCN 6 Cs,CO3 2.0 90 5 17
4 CHsCN 6 NEt; 2.0 90 8 22
5 CHsCN 6 DIPEA 2.0 90 8 19
6 Toluene 6 DABCO 2.0 110 23 68
7 Dioxane 6 DABCO 2.0 110 78 84
8 THF 6 DABCO 2.0 70 89 90
9 'BuOH 6 DABCO 2.0 90 62 62
10 DMF 6 DABCO 2.0 110 65 65
11 'BuOH 6 K,COs3 2.0 90 18 99
12 CHsCN 3 DABCO 2.0 90 80 81
13 CHsCN 6 DABCO 1.0 90 72 78

(2 The yields have been determined by GC-MS using naphthalene as an internal standard (4 pL of the reaction solution have

been diluted with 1.000 mL of a naphthalene stock solution in acetone).
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Table S3. Comparison of monometallic and heterobimetallic Pd" complexes as precatalyst for the transfer semi-
hydrogenation. A mixture of diphenylacetylene (0.25 mmol, 1.0 eq.), NH3-BH3 (0.25 mmol, 1.0 eq.), precatalyst (0.015 mmol,
6 mol%) and dry, degassed CHsCN (1.0 mL) was heated to 50 °C under Ar for 6-24 h.

— precatalyst (6 mol%)
- NH3-BH3
CH1CN, 50 °C, 6-24 h

3a

Z|E/alkane ratio

Entry Precatalyst Yield [%] after 6 h
Z/E/alkane
(after 24 h)

1 CoPdL3’ 10/60/30
2 PdL3’ 3/31/66
3 Col4/PdL5’ 32/68/-
4 Col4 9/6/-
(24/58/-)
5 PdL5’ 21/50/28
6 - _/_/_
(-/3/-)

(2 The yields have been determined by GC-MS using naphthalene as internal standard (4 pL of the reaction solution have
been diluted with 1.000 mL of a naphthalene stock solution in acetone).
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5.3 Reaction Process

Addition
of NH3'BH3
100 T
|
|
[ | ® L ] L ®
80 - ¢
[
S 604 . ¢ = Diphenylacetylene
X o Z-stilbene
- |
3 !
> 404
20 4
0dm
I I N I N 1 N 1 N 1 v 1 N 1
0 8 12 16 20 24 28

t[h]

Figure S56. Yield-over-time graph for the formation of diphenylacetylene (blue) in the Sonogashira cross-coupling reaction
followed by the formation of Z-stilbene (red) after adding NH3-BH3 at t = 4 h. The yields have been determined by GC-MS
using naphthalene as internal standard.

Int. St.

2a CoPdL3’ + DABCO + Substrates
| (t=0h, 90°C)

DABCO

T TR TR T TR R R R TR TR T TR R R Sonogashira
Cross-Coupling

Int. St. 3a

CoPdL3’ + DABCO + Substrates
(t=4h,90°C)

Transfer Semi-
Hydrogenation

= Z-Alkene 4a

|Int, St.
CoPdL3’ + DABCO + Substrates + NH;BH,

(t=16h, 50 °C)
Alkane E-Alkene

£ - | %

Figure S57. Reaction process followed by GC-MS using naphthalene as an internal standard (Int. St.).
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1H NMR (400 MHz, CDECN, room temperature)

s CoPdL3’

+a  CoPdL3’ + DABCO

|\ 3 CoPdL3" + DABCO + Substrates (t =0 h)
N Sonogashira
' Cross-Coupling

2 CoPdL3’ + DABCO + Substrates (t =4 h, 90 °C)

- . . TN N Transfer Semi-
Hydrogenation

., CoPdL3’ + DABCO + Substrates + NH;BH;

%
L | (t=9h,50°C)

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 35 3.0 25
ppm

Figure S58. Reaction process followed over time by *H NMR spectroscopy in CDsCN at room temperature.
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31p{IH} NMR (162 MHz, CD;CN, room temperature)

te CoPdL3’

FAﬂﬂU““ﬂHﬂN*NﬁmﬁhnnhHmﬂﬂﬂﬁﬂﬂﬁﬂnﬂﬂﬂwﬂmhﬂuﬂﬁumﬂnf

[ ts CoPdL3" + DABCO

L CoPdL3’ + DABCO + Substrates
| " (t=2h,90°C) Sonogashira
i Cross-Coupling
CoPdL3’ + DABCO + Substrates

" (t=4h,90°C)
MMMMMMWM!I

CoPdL3’ + DABCO + Substrates + NH;BH;

? (t=4h,50°C) Transfer Semi-
‘ Hydrogenation
" CoPdL3’ + DABCO + Substrates + NH;BH,

(t=9h, 50 °C)

200 180 160 140 120 100 80 60 40 20 0
ppm

Figure S59. Reaction process followed over time by 3'P{*H} NMR spectroscopy in CDsCN at room temperature.
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1B NMR (128 MHz, CD,CN, room temperature)

40

30

20 10 0 -10 -20 -30 -40
Ppm

Figure S60. Reaction process of the transfer semi-hydrogenation followed over time by !B NMR spectroscopy in CDsCN at room temperature.
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5.4 Homogeneous or Heterogeneous?

Furthermore, we have been interested in the true nature of the catalyst. To exclude the formation of
catalytically active nanoparticles, several poisoning and kinetic studies have been performed as well
as analytical methods (dynamic light scattering (DLS) and high-resolution transmission electron
microscopy/energy-dispersive X-ray spectroscopy (TEM/EDX)) to detect potential nanoparticles.! The
reaction process was monitored over time (Figure S56). The reaction kinetics have not shown a
sigmoidal curve indicating that there is no induction period to form catalytically active nanoparticles.
In parallel, poisoning studies (mercury test, quantitative ligand poisoning, Crabtree’s test?) have been
carried out for the Sonogashira cross-coupling reaction (Figure S61). The mercury test resulted in a
complete inhibition of the catalyst; therefore, a drop of Hg was added directly at the beginning and
after 30 min. This result would mean that the precatalyst decomposes into catalytically active
nanoparticles which would be inhibited by the amalgam formation. However, the reliability of the
mercury test is doubtful for palladacycles.® Therefore, the stability of CoPdL3’ was investigated by
heating the complex with mercury for 2 d. No decomposition was observed but the addition of DABCO
and mercury resulted in decomposition of the complex (Figure S62, S63). For this reason, the mercury
test seems to be a false positive. The addition of 0.1 eq. PMe;Ph per CoPdL3’ did not inhibit the
catalytic performance. However, the addition of 0.5 eq. PMe,Ph per CoPdL3’ caused a complete
inhibition. This might underline the homogeneous nature of the catalytically active species. The
limitations of this test are reaction temperatures over 50 °C because PMe,;Ph might dissociate from
the heterogeneous catalyst surface. On the other hand, the Crabtree’s test is used to poison a
homogeneous catalyst. However, a possible homogeneous catalyst was not inhibited by the addition
of dibenzo[a,e]cyclooctatetraene (DCT) even if the reaction mixture was stirred for 3 h at room
temperature before continuing with heating at 90 °C. In general, the DCT did not react with CoPdL3’
at room temperature for 24 h nor at 90 °C for 24 h (Figure S64, S65). Therefore, the Crabtree’s test is
not suitable for this complex. Moreover, the Maitlis’ test was performed after completion of the
Sonogashira cross-coupling reaction. The hot reaction mixture was filtered over Celite and fresh
substrates and solvent were added. The filtrate was still catalytically active giving diphenylacetylene
with ayield of 71% after 4 h. Since these tests could not fully prove the nature of the catalytically active
species, DLS and TEM-EDX measurements were carried out. The DLS measurement has shown
nanoparticles with a size of 10 nm and 26 nm though the count rate was relatively low (77 kcps, should
be 100-500 kcps (kilo counts per second)) and the baseline index was 5.7 (should be >8). Both values
suggest a low quality of the DLS measurement and a possible contamination by dust (Chapter 5.4.2).
Therefore, we tried to track potential nanoparticles by TEM-EDX measurements, but no nanoparticles
have been found (Chapter 5.4.3). Finally, the reaction process was followed by *H and 3'P{*H} NMR
spectroscopy (Figure S58, S59) indicating the complex identity during the Sonogashira cross-coupling.
However, the phosphorus signal shifts from 180.4 ppm to 101.6 ppm during the transfer semi-
hydrogenation which is comparable to the monometallic complex PdL3’ (100.2 ppm). This suggests the
potential loss of Co from the heterobimetallic complex. It is worth mentioning, that the complexes
CoPdL3’, PdL3’, ColL4 and PdL5’ have been tested for the direct transfer hydrogenation of
diphenylacetylene but none of the complexes have shown similar reactivity and selectivity as CoPdL3’
after the Sonogashira cross-coupling reaction (Table S3). Therefore, we propose that the catalytically
active species for the transfer semi-hydrogenation was formed during the Sonogashira cross-coupling
reaction. However, there is no clear evidence if Co or Pd is catalysing the transfer semi-hydrogenation.
Nevertheless, we conclude that the catalytically active species is homogeneous.
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5.4.1 Poisoning Studies

100
80 1 [ addition of He,
PMe,Ph or DCT
(t=0.5h)
—. 60 i
=
=]
2
> 404
20

A

2
t[h]

= w/o additives
—A— Hg (2000 mol%) addition after O h
—aA— Hg (2000 mol%) addition after 0.5 h
PMe,Ph (0.5 mol%)
+— PMe,Ph (3.0 mol%)

o— DCT (36 mol%)

Figure S61. Catalyst poisoning during the Sonogashira cross-coupling reaction with Hg (330 eq. per CoPdL3’), PMe,Ph (0.1 eq.
and 0.5 eq. per CoPdL3’) and DCT (6.0 eq. per CoPdL3’). The yields have been determined by GC-MS using naphthalene as

internal standard.

43



Hg Poisoning

1H NMR (400 MHz, CD;CN, room temperature)

CoPdL3’ + 330 eq. Hg
(t=0h, rt)

CoPdL3’ + 330 eq. Hg
(t=48h,90°C)

CoPdL3’ + 330 eq. Hg + 33 eq. DABCO
(t=0h)

CoPdL3’ + 330 eq. Hg + 33 eq. DABCO
(t=24h,90°C)

10 9 8 7 6 5 4 3

Figure $62. 'H NMR spectra of the complex CoPdL3’ reacting with Hg and DABCO.
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31p{IH} NMR (162 MHz, CD;CN, room temperature)

CoPdL3’ + 330 eq. Hg
(t=0h, rt)

| CoPdL3’ +330 eq. Hg
l.lJ‘ll o ”” l||||| " | | | (t=48h, 90 °C)
CoPdL3’ + 330 eq. Hg + 33 eq. DABCO
(t=0h)

CoPdL3’ + 330 eq. Hg + 33 eq. DABCO
T (t=24h,90°C)

T
ry

w

A e Y T
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Figure S63. 3!P{*H} NMR spectra of the complex CoPdL3’ reacting with Hg and DABCO.
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DCT Poisoning

1H NMR (400 MHz, CDECN, room temperature)

3 CoPdL3’ +12eq.DCT (t=0h, rt)

-2 CoPdL3’ +12 eq. DCT (t =24 h, rt)

-1 CoPdL3’ + 12 eq. DCT (t =24 h, 90 °C)

ppm

Figure S64. *H NMR spectra of the complex CoPdL3’ not reacting with DCT.
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31p{1H}NMR (162 MHz, CD;CN, room temperature)

dl 3 CoPdL3’ +12 eq. DCT (t=0h, rt)

2 CoPdL3’ + 12 eq. DCT (t =24 h, rt)

|
T —————

1 CoPdL3’ + 12 eq. DCT (t = 24 h, 90 °C)

200 180 160 140 120 100 80 60 40 20 0

Figure S65. 31P{*H} NMR spectra of the complex CoPdL3’ not reacting with DCT.
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5.4.2 DLS (dynamic light scattering)

Measurement Parameters:

Temperature =25.0deg. C

Liquid = Unspecified
Viscosity =0.334 cP

Ref.Index Fluid =1.344

Angle =90.00

Wavelength =659.0 nm

Baseline = Auto (Slope Analysis)

RC_78 H12st_dust5_100x diluted (Combined)

Effective Diameter: 16.4 nm

Polydispersity:
Baseline Index:
Elapsed Time:

Run Eff. Diam. (nm)
1 16.0
2 16.0
3 16.3
4 16.6
5 16.4
Mean 168.3 6.
Std. Error 0.1 0.
Combined 16.4 6.
Elapsed Time 00:02:30 100
Mean Diam. 19.6 nm
Rel. Var. 0.187 > 75
Skew -0.239 D
S 50
=
25
0
d(nm) G(d) C(d) d(nm)
7.3 0 0 12.6
7.7 0 0 13.2
8.1 0 0 13.9
8.5 0 0 146
8.9 23 4 15.4
94 57 14 16.1
9.9 81 28 17.0
10.4 58 38 17.8
10.9 24 43 18.7
11.4 0 43 19.7
12.0 0 43 206

0.158

DN D

5.7/ 37.50%
00:02:30

Half Width (nm)

6
6
7
2
3
7
2
5
5.0

G(d)

0

0

0

0

0

0

0

0

0

0

0

Runs Completed
Run Duration

Total Elapsed Time
Average Count Rate

Ref.Index Real
Ref.Index Imag

Dust Filter Setting

1

10 102

103

t(us)
Correlation Function

Polydispersity

C(d)

48

[=jelelele]

oo

s
s Ve
171
.189
.146

. 170
.007
.158

Diameter (nm)
Multimodal Size Distribution

d(nm)
21.7
22.8
23.9
252
26.4
27.8
29.2
30.6
32.2
33.8
355

=5

= 00:00:30
=00:02:30

=76.9 kcps
=1.590
=0.000

=5.00

104

105

106

Baseline Index

Mmoo N

=

.4/
2l
)
By
.51

.4/

B

43.
32.
38.
37 .
36.

37.
37.

06%
64%
19%
50%
11%

50%
50%

50.0



5.4.3 Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (TEM/EDX analysis)

kV: 200; Mag: 80000; Takeoff: 12.4; Live Time (s): 42; Amp Time (us): 3.84; Resolution (eV): 126.8.

19.8K
17.6K
154K
13.2K
11.0K

8.8K

6.6K Co Cu
aak| W,

dl

2.2K

Co Cu
A ‘. -
4.0 6.0 8.0 100 120 140 16.0 180

D.Ola

Lsec: 420 1.578K Cnts 11.920 keV Det: Octane T Optima 30 Windowless

Element Weight% Atomic% NetInt.  Net Error%kAB Factor!

CK 21.7 36.3 2140.7 0.4 1.27
N K 9.2 13.1 1210.8 0.6 0.94
O K 27.0 33.9 3364.7 0.5 1

FK 2.0 2.1 154.1 10.8 1.61
Mg K 0.9 0.7 96.3 4.2 1.13
SK 2.5 1.6 276.8 1.7 1.12
Pd L 1.9 0.4 69.9 2.0 3.36
CoK 34.9 11.9 2079.4 0.5 2.09

! The number kAB, normally called the k-factor, relates the compositions of A and B. It is not a proper constant,
but it is referred to as a sensitivity factor. It depends on the particular AEM system, the voltage, and analysis
conditions in general.
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kV: 200; Mag: 100000; Takeoff: 12.4; Live Time (s): 45.7; Amp Time (us): 3.84; Resolution (eV): 126.8.

11.0K

9.9K|

8.8K

7.7K

6.6K

5.5K

4.4K

3.3K

2.2K

0.05_

Co

Br Br
Co Cu Br

40 6.0 8.0 100 120 140 160

Lsec: 45.7

907 Cnts 11.920 keV Det: Octane T Optima 30 Windowless

Element Weight% Atomic% NetInt. Net Error%kAB Factor!

CK 20.2 38.6 1176.6 0.5 1.27
O K 21.5 30.8 1581.9 0.7 1

SK 0.4 0.3 23.3 15.4 1.12
CoK 23.7 9.2 834.4 0.9 2.09
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kV: 200; Mag: 40000; Takeoff: 12.4; Live Time (s): 45.9; Amp Time (us): 3.84; Resolution (eV): 126.8.

9.00K

8.00K

7.00K

6.00K

5.00K

4.00K

3.00K

2.00K

1.00K

o0,

Cu

Co

Cu
Co Br

=

20 40 6.0 8.0 100 120 140 16.0

18.0

Lsec:45.9

709 Cnts 11.920 keV Det: Octane T Optima 30 Windowless

Element Weight% Atomic% NetInt.  Net Error%kAB Factor!

CK 20.1 38.5 1032.3 0.6 1.27
O K 21.9 315 1423.4 0.7 1

SK 0.4 0.3 26.0 12.4 1.12
CoK 25.7 10.0 798.3 0.9 2.09

51




5.5 Substrate Scope

General procedure for sequential Sonogashira cross-coupling reaction followed by transfer semi-
hydrogenation. 4a-4m:

Substituted bromobenzene derivative (0.5 mmol, 1 eq.), phenylacetylene (1.0 mmol, 110 ul, 2 eq.),
CoPdL3’ (0.03 mmol, 30 mg, 6 mol%), DABCO (1.0 mmol, 112 mg, 2 eq.) and acetonitrile (2 mL) were
added. The reaction mixture was degassed by freeze-pump-thaw and heated in an oil bath at 90 °C.
After 4 hours, the progress of the reaction was checked using GC-MS which was followed by addition
of ammonia borane (31 mg, 1.0 mmol, 2 eq.) mixed in 1:1 ratio with MgSO, to ease the process of
weighing in the solid and additionally acetonitrile (2 mL) was added. The flask was covered completely
in aluminium foil and was heated in a water bath at 50 °C for 15 hours. The reaction was monitored by
GC-MS, the reaction mixture was passed over Celite and the precipitate was washed with
dichloromethane (3 x 10 mL). The crude reaction mixture filtrate was purified using a Biotage Isolera
(25 g SNAP Ultra cartridge, EtOAc (EA)/n-hexane (Hex) or n-pentane) to afford the corresponding
compounds (4a-4m) and isolated yields are reported.

Procedure for synthesis of combretastatin A-4 (4n) by sequential Sonogashira cross-coupling reaction
followed by transfer semi-hydrogenation:

In a Schlenk flask under argon, 5-iodo-2-methoxyphenol (125 mg, 0.5 mmol, 1 eq.), 5-ethynyl-1,2,3-
trimethoxybenzene (192 mg, 1.0 mmol, 2eq.), CoPdL3’ (0.03 mmol, 30 mg, 6 mol%), DABCO
(1.0 mmol, 112 mg, 2 eq.) and acetonitrile (2 mL) were added. The reaction mixture was degassed by
freeze-pump-thaw and heated in an oil bath at 90°C. After 5 hours, ammonia borane (31 mg,
1.0 mmol, 2 eq.) was weighed in and additionally acetonitrile (2 mL) was added. The flask was covered
completely in aluminium foil and was heated in a water bath at 50 °C for 24 hours. The reaction mixture
was cooled down and passed over Celite and washed with dichloromethane (3 x 10 mL). The crude
reaction mixture was purified using a silica gel column eluted with n-pentane/ethyl acetate (7:3) to
afford the combretastatin A-4 as a viscous oil that solidified on cooling (82 mg, 26 mmol, 52%).
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4a: (2)-1,2-diphenylethene*

Product was isolated via column chromatography (Hex) as a colourless liquid (71 mg, 0.39 mmol,
79%).

IH NMR (400 MHz, CDCls) & = 7.28 — 7.13 (m, 10H), 6.59 (s, 2H).

BC{*H} NMR (101 MHz, CDCl5) & = 137.2, 130.2, 128.9, 128.2, 127.1.

4b: (2)-1-methyl-4-styrylbenzene*

Product was isolated via column chromatography (Hex/EA — 200:3) as a colourless liquid (64 mg,
0.33 mmol, 66%).

IH NMR (400 MHz, CDCls) & (ppm) = 7.29 — 7.16 (m, 5H), 7.16 — 7.12 (m, 2H), 7.02 (d, J=7.9, 2H), 6.55
(s, 2H), 2.30 (s, 3H).

13C{*H} NMR (101 MHz, CDCl3) § (ppm) = 137.6, 137.0, 134.4, 130.3, 129.7, 129.0, 129.0, 128.9, 128.3,
127.1, 21.4.

4c: (2)-1-methyl-3-styrylbenzene®

Product was isolated via column chromatography (Hex/EA —50:1) as a colourless liquid (69 mg,
0.35 mmol, 71%).

IH NMR (400 MHz, CDCl3) & (ppm) = 7.26 — 7.16 (m, 5H), 7.11 — 6.98 (m, 4H), 6.56 (s, 2H), 2.25 (s, 3H).

B3C{*H} NMR (101 MHz, CDCls) & (ppm) = 137.9, 137.5, 137.3, 130.5, 130.2, 129.7, 129.0, 128.3, 128.2,
128.0, 127.2, 126.0, 21.5.

4d: (2)-1-methyl-2-styrylbenzene?*
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Product was isolated via column chromatography (Hex/EA —50:1) as a colourless liquid (65 mg,
0.33 mmol, 67%).

1H NMR (400 MHz, CDCl3) & (ppm) = 7.22 — 6.98 (m, 9H), 6.62 (m, 2H), 2.26 (s, 3H).

13C{1H} NMR (101 MHz, CDCl) & (ppm) = 137.1, 137.0, 136.1, 130.5, 130.0, 129.5, 128.9, 128.8, 128.0,
127.2,127.0, 125.7, 19.8.

4e: (2)-1-chloro-4-styrylbenzene*

Cl

Product was isolated via column chromatography (Hex/EA —49:1) as a colourless liquid (82 mg,
0.38 mmol, 76%).

IH NMR (400 MHz, CDCl3) & (ppm) = 7.28 — 7.10 (m, 9H), 6.62 (d, J = 12.2 Hz, 1H), 6.52 (d, J = 12.2 Hz,
1H).

B3C{*H} NMR (101 MHz, CDCls) & (ppm) = 136.8, 135.6, 132.7, 130.9, 130.2, 128.9, 128.8, 128.4, 128.3,
127.3.

4f: (2)-1-fluoro-4-styrylbenzene*

F

Product was isolated via column chromatography (Hex/EA — 100:3) as a colourless liquid (62 mg,
0.31 mmol, 63%).

IH NMR (400 MHz, CDCl3) & (ppm) = 7.28 — 7.15 (m, 7H), 6.90 (t, J = 8.8 Hz, 2H), 6.59 (d, J = 12.2 Hz,
1H), 6.54 (d, J = 12.2 Hz, 1H).

13C{'H} NMR (101 MHz, CDCls) & (ppm) = 162.0 (d, Jer = 246.6 Hz), 137.2, 133.3 (d, Jer = 3.5 Hz), 130.7
(d, Jer = 7.9 Hz), 130.4 (d, Jor = 1.3 Hz), 129.2, 129.0, 128.4, 127.3, 115.3 (d, Jer = 21.4 Hz).

19F NMR (377 MHz, CDCls) 6 = —114.7 (tt, Jr = 9.0, 5.4 Hz).

4g: (2)-trimethyl(4-styrylphenyl)silane®

/
Si—
/
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Product was isolated via column chromatography (Hex/EA — 100:3) as a colourless liquid (81 mg,
0.32 mmol, 64%).

IH NMR (400 MHz, CDCls) & (ppm) = 7.32 — 7.26 (m, 2H), 7.23 — 7.07 (m, 7H), 6.56 — 6.44 (m, 2H), 0.16
(s, 9H).

13C{*H} NMR (101 MHz, CDCl3) § (ppm) = 139.5, 137.7, 137.5, 133.3, 130.5, 130.4, 129.0, 128.4, 128.3,
127.2,-1.0.

4h: (2)-ethyl 4-styrylbenzoate®

COOEt

Product was isolated via column chromatography (Hex/EA — 100:3) as a white solid (93 mg,
0.37 mmol, 74%).

IH NMR (400 MHz, CDCl3) & (ppm) = 7.89 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.24 — 7.19 (m,
2H), 6.71 (d, J = 12.2 Hz, 1H), 6.61 (d, J = 12.3 Hz, 1H), 4.36 (g, J = 7.1 Hz, 1H), 1.38 (t, J = 7.1 Hz, 2H).

B3C{*H} NMR (101 MHz, CDCls) & (ppm) = 166.4, 142.0, 136.7, 132.1, 129.5, 129.3, 128.9, 128.8, 128.8,
128.3, 127.5, 60.9, 14.3.

4i: (2)-1-styrylnaphthalene’

Product was isolated via column chromatography (n-pentane) as a colourless oil (79 mg, 0.34 mmol,

69%).

IH NMR (400 MHz, CDCl3) & (ppm) = 8.11 — 8.06 (m, 1H), 7.92 — 7.84 (m, 1H), 7.83 = 7.71 (m, 1H), 7.57
—7.41 (m, 2H), 7.41 - 7.30 (m, 2H), 7.13 = 7.02 (m, 6H), 6.84 (d, J = 12.2 Hz, 1H).

13C{*H} NMR (101 MHz, CDCl3) § (ppm) = 136.7, 135.2, 133.6, 131.9, 131.5, 129.0, 128.4, 128.3, 127.9,
127.4,127.0, 126.4, 125.9, 125.9, 125.5, 124.8.

4j: (2)-2-styrylthiophene®

S
//

Product was isolated via column chromatography (n-pentane) as a colourless oil (59 mg, 0.32 mmol,
63%).
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1H NMR (400 MHz, CDCl3) & (ppm) = 7.40 — 7.29 (m, 5H), 7.11 (dd, J = 5.1, 1.2 Hz, 1H), 6.99 (d, J =
3.6 Hz, 1H), 6.90 (dd, J = 5.1, 3.6 Hz, 1H), 6.72 (d, J = 11.9 Hz, 1H), 6.60 (d, J = 11.9 Hz, 1H).

13C{'H} NMR (101 MHz, CDCls) & (ppm) = 139.8, 137.3, 128.9, 128.8, 128.5, 128.1, 127.5, 126.4, 125.5,
123.3.

4k: (2)-5-styrylpyrimidine*

7 N\
N="

Product was isolated via column chromatography (Hex/EA — 7:3) as a yellow oil (67 mg, 0.37 mmol,
74%).

IH NMR (400 MHz, CDCl3) & (ppm) = 9.01 (s, 1H), 8.56 (s, 2H), 7.32 — 7.17 (m, 6H), 6.89 (d, J = 12.1 Hz,
1H), 6.47 (d, J = 12.1 Hz, 1H).

13C{1H} NMR (101 MHz, CDCls) § (ppm) = 156.9, 156.7, 135.9, 135.1, 131.3, 129.0, 128.6, 128.2, 122.8.

4l: (2)-2-styrylpyridine®

7\

Product was isolated via column chromatography (Hex/EA — 8:2) as a yellow oil (61 mg, 0.33 mmol,
67%).

IH NMR (400 MHz, CDCls) & (ppm) = 8.58 — 8.55 (m, 1H), 7.44 — 7.38 (m, 1H), 7.27 — 7.19 (m, 5H), 7.16
—7.11 (m, 1H), 7.09 — 7.03 (m, 1H), 6.81 (d, J = 12.4 Hz, 1H), 6.67 (d, J = 12.4 Hz, 1H).

13C{*H} NMR (101 MHz, CDCls) & (ppm) = 156.5, 149.7, 136.8, 135.8, 133.4, 130.7, 129.0, 128.4, 127.7,
124.0, 121.9.

4m: (E)-4-styrylaniline!

] NH,
98

Product was isolated via column chromatography (n-pentane/EA — 7:3) as a yellow solid (61 mg,
0.31 mmol, 62%).

14 NMR (400 MHz, CDCls) & (ppm) = 7.50 — 7.42 (m, 2H), 7.36 — 7.28 (m, 4H), 7.25 — 7.16 (m, 1H), 7.02
(d,J = 16.3 Hz, 1H), 6.91 (d, J = 16.3 Hz, 1H), 6.70 — 6.60 (m, 2H), 3.71 (br, 1H).

56



13C{'H} NMR (101 MHz, CDCls) & (ppm) = 146.1, 137.9, 128.7, 128.6, 128.0, 127.7, 126.9, 126.1, 125.1,
115.2.

4n: (2)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenol - Combretastatin A-41%

MeO OMe OMe

Product was isolated via column chromatography (n-pentane/EA-7:3) as a viscous oil that solidified
on cooling (82 mg, 26 mmol, 52%).

IH NMR (400 MHz, CDCl3) & (ppm) = 6.92 (d, J = 2.0 Hz, 1H), 6.80 (dd, J = 8.4, 2.0 Hz, 1H), 6.73 (d, J =
8.4 Hz, 1H), 6.53 (s, 2H), 6.44 (dd, J = 12.2 Hz, 2H), 5.51 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.70 (s, 6H).

13C{'H} NMR (101 MHz, CDCls) & (ppm) = 153.0, 145.9, 145.4, 137.3, 132.9, 130.8, 129.6, 129.2, 121.3,
115.2, 110.5, 106.2, 61.1, 56.1.
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4a: (2)-1,2-diphenylethene

IH NMR (400 MHz, CDCls)
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4b: (2)-1-methyl-4-styrylbenzene

IH NMR (400 MHz, CDCls)
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4c: (Z2)-1-methyl-3-styrylbenzene

IH NMR (400 MHz, CDCls)
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4d: (2)-1-methyl-2-styrylbenzene

IH NMR (400 MHz, CDCls)
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4e: (Z)-1-chloro-4-styrylbenzene

Cl

H NMR (400 MHz, CDCls)
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4f: (2)-1-fluoro-4-styrylbenzene

F

IH NMR (400 MHz, CDCls)
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4g: (2)-trimethyl(4-styrylphenyl)silane

/
Si—

IH NMR (400 Hz, CDCls)
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4h: (2)-ethyl 4-styrylbenzoate

COOEt

H NMR (400 MHz, CDCls)
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i: (Z2)-1-styrylnaphthalene

IH NMR (400 MHz, CDCls)
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4k: (2)-5-styrylpyrimidine

'H NMR (400 MHz, CDCls)
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4l: (2)-2-styrylpyridine

'H NMR (400 MHz, CDCls)
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4m: (E)-4-styrylaniline

NH,
g

'H NMR (400 MHz, CDCls)
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4n: (Z)-2-methoxy-5-(3,4,5-trimethoxystyryl)phenol - Combretastatin A4
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6. Electrochemistry

Table S4. Electrochemical potentials of compounds L3, PdL3’, MnPdL3’ and CoPdL3’ were determined
by cyclic voltammetry (CV). L3 was measured in THF/0.1 mol-L™* [N(nBu)4]PFs and the complexes PdL3’,
MnPdL3’ and CoPdL3’ were measured in CH3CN/0.1 mol-L™* [N(nBu)4]PFs with a scan rate of 100 mV-s™*
at room temperature under N, atmosphere. The scan range was from 1 V to -2 V. Ferrocene was used
as internal standard at the end of the CV experiment to reference the reported potentials to the
FcH/[FcH]" couple.

Compound Epcin V (I in pA) Epain V (lin pA) Ei2inV
L3 -1.60 (-5.2); —1.75 (-5.6) 0.71(22.1); 0.81 (21.5)
PdL3’ 0.78 (24.0)
MnPdL3* -1.51 (-22.2);
CoPdL3’ -1.41 (-16.6); —-1.93 (-26.8)
-1.14 (-20.0) -1.04 (5.6) -1.09
jj MnPdL3’
f: PdL3’
L3
T10yA >
2 1 0 1

E [V] vs. FCH/[FcH)*
Figure S66. Cyclic voltammograms of the ligand L3 in THF/0.1 mol-L~ [N(nBu),;]PFs and the complexes

PdL3’, MnPdL3’ and CoPdL3’ in CH3CN/0.1 mol-L™! [N(nBu)4]PFs with a scan rate of 100 mV-s~*. The arrow represents the
respective starting potential and scan direction.
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Figure S67. Cyclic voltammogram of CoPdL3’ in [N(nBu)4]PFs/CH3CN showing the assumed Co'/Co' quasi-reversible process

7
8
9

at different scan rates. The arrow represents the respective starting potential and scan direction.
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