Supporting Information

Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: speeding-up emission rate using arsine ligands

Alexander V. Artem'ev,^{a*} Yan V. Demyanov,^a Marianna I. Rakhmanova,^a Irina Yu. Bagryanskaya^b

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation

^bN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

*E-mail: chemisufarm@yandex.ru (Alexander V. Artem'ev)

Table of content

- S2 §1. Materials and Instrumentation
- S2–3 §2. Synthetic procedures and characterization data
- S4 §3. Single crystal X-ray crystallography
- S5–6 §4. Powder X-ray diffraction data
- S7–11 §5. ¹H and ¹³C NMR spectra
- S12 §6. FT-IR spectra
- \$13 §7. TGA&DTG curves
- S13–14 §8. Photophysical details
- S15–18 §9. Computational details
- \$18 §10. References

§1. Materials and Instrumentation

All synthetic procedures were carried out under an argon atmosphere using standard Schlenk technique. Cul (\geq 99%, Sigma), [Cu(CH₃CN)₄]BF₄ (\geq 99%, Acros), *n*-BuLi (2.5 M in hexanes, Sigma), 2-bromopyridine (\geq 99%, Acros), silica gel 60 (Macherey-Nagel, 60 Å pore size, 230-400 mesh) were used as purchased. CuCl (\geq 99%, Sigma) was additionally purified prior to use by subsequent washing with HCl_{aq}, water and acetone, followed by drying under vacuum. CuBr was freshly synthesized by treatment of CuBr₂ with Cu powder in MeCN solution. Dichlorophenylarsine (PhAsCl₂) was prepared according to literature procedure.^[1]

¹H and ¹³C NMR spectra were recorded using a Bruker AV-500 spectrometer at 500.13 and 125.77 MHz respectively. Chemical shifts were reported in δ (ppm) relative to CDCl₃.

FT-IR spectra were registered in KBr pellets on a Bruker Vertex 80 spectrometer at ambient temperature.

CHN microanalyses were performed on a MICRO cube analyzer.

Thermogravimetric analyses (TGA/c-DTA/DTG) were carried out in a closed Al_2O_3 pan under argon flow at 10 °C/min⁻¹ heating rate using a NETZSCH STA 449 F1 Jupiter STA.

Powder X-ray diffraction (PXRD) patterns were recorded on a Shimadzu XRD-7000 diffractometer (Cu-K α radiation, Ni – filter, 3–35° 2 ϑ range, 0.03° 2 ϑ step, 5s per point).

Steady state emission and excitation spectra were recorded on a Fluorolog 3 spectrometer (Horiba Jobin Yvon) equipped with a cooled PC177CE-010 photon detection module and an R2658 photomultiplier. The emission decays were recorded on the same instrument. The absolute PLQYs were determined at 300 K using a Fluorolog 3 Quanta-phi integrating sphere. The PLQYs at 77 K were obtained relative to those of the same samples at 300 K. Independently, the relative PLQYs were calibrated using the absolute PLQY values measured at 77 K. Temperature-dependent excitation and emission spectra as well as emission decays were recorded using an Optistat DN optical cryostat (Oxford Instruments) integrated with above spectrometer.

§2. Synthetic procedures and characterization data

Bis(2-pyridyl)phenylarsine (AsPy₂Ph)

Caution! These operations, which involve toxic phenyldichloroarsine (PhAsCl₂), must be conducted in an efficient hood!

n-BuLi (2.5 M in hexanes, 5.2 mL, 13 mmol) was added dropwise to a solution of 2-bromopyridine (2.05 g, 13 mmol) in THF (30 mL) at –78 °C, and the mixture was stirred at the same temperature for 1 h. To a resulting solution, PhAsCl₂ (1.45 g, 6.5 mmol) in THF (10 mL) was added dropwise at –78 °C for 10 min, and the mixture was warmed to ambient temperature and reached overnight. The reaction mixture was then quenched with water (20 mL) and extracted with CH₂Cl₂ (3 x 30 mL). The organic phases were dried over Na₂SO₄, and concentrated under reduced pressure. The residue obtained was purified through silica column chromatography (hexane:EtOAc, v/v = 1:1) to give pure product (0.378 g, 19%) as a pale solid. ¹H NMR (500.13 MHz, CDCl₃, ppm), δ : 8.73 (ddd, *J* = 4.8 Hz, *J* = 1.9 Hz, *J* = 0.9 Hz, 2H, H⁶ in Py), 7.58 (dt, *J* = 7.7 Hz, *J* = 1.9 Hz, 2H, H⁴ in Py), 7.52–7.49 (m, 2H, H⁵ in Py), 7.40–7.35 (m, 3H, *m*-H and *p*-H in Ph), 7.32 (dt, *J* = 7.7 Hz, *J* = 1.1 Hz, 2H, *o*-H in Ph), 7.22 (ddd, *J* = 7.6 Hz, *J* = 4.9 Hz, *J* = 1.2 Hz, 2H, H³ in Py). ¹³C NMR (125.77 MHz, CDCl₃, ppm) δ : 166.6, 150.4, 139.1, 135.8, 134.4, 133.9, 128.8, 122.5. Calcd. for C₁₆H₁₃AsN₂ (308.21): C, 62.3; H, 4.3; N, 9.1. Found: C, 62.2; H, 4.2; N, 9.0.

$[Cu_2(Py_2AsPh)_2Cl_2] (1)$

The mixture of CuCl (12 mg, 0.12 mmol) and Py₂AsPh (37 mg, 0.12 mmol) in CH₂Cl₂ (1 mL) was stirred at room temperature for 30 min. The formed precipitate was centrifuged and dried in vacuum. White powder. Yield: 88 mg (90%). ¹H NMR (500.13 MHz, CDCl₃, ppm), δ : 9.10 (d, *J* = 5.0 Hz, 4H, H⁶ in Py), 8.38 (s, 4H, H⁴ in Py), 7.69–7.63 (m, 6H, *m*-H and *p*-H in Ph), 7.47 (t, *J* = 7.7 Hz, 4H, H⁵ in Py), 7.17 (t, *J* = 6.4 Hz, 4H, *o*-H in Ph), 7.12 (d, *J* = 7.9 Hz, 4H, H³ in Py). FT-IR (KBr, cm⁻¹): 415 (m), 457 (w), 478 (m), 492 (m), 615 (w), 635 (w), 671 (w), 702 (m), 758 (s), 770 (s), 988 (w), 1007 (m), 1024 (w), 1047 (w), 1082 (m), 1123 (w), 1157 (w), 1188 (w), 1233 (vw), 1275 (w), 1281 (w), 1420 (s), 1449 (vs), 1481 (w), 1537 (vw), 1558 (m), 1578 (s), 1639 (w), 1919 (vw), 2021 (vw), 2959 (w), 3032 (m), 3053 (m), 3073 (w), 3117 (vw). Calcd. for C₃₂H₂₆As₂Cu₂Cl₂N₄ (814.42): C, 47.2; H, 3.2; N, 6.9. Found: C, 47.1; H, 3.1; N, 6.8.

[Cu₂(Py₂AsPh)₂Br₂] (**2**)

The mixture of CuBr (12 mg, 0.083 mmol) and Py₂AsPh (26 mg, 0.084 mmol) in CH₃CN (1 mL) was stirred at room temperature for 30 min. The formed precipitate was centrifuged and dried in vacuum. White powder. Yield: 69 mg (92%). ¹H NMR (500.13 MHz, CDCl₃, ppm), δ : 9.17 (d, *J* = 5.2 Hz, 4H, H⁶ in Py), 8.40 (s, 4H, H⁴ in Py), 7.69–7.63 (m, 6H, *m*-H and *p*-H in Ph), 7.46 (t, *J* = 7.7 Hz, 4H, H⁵ in Py), 7.16 (t, *J* = 6.4 Hz, 4H, *o*-H in Ph), 7.10 (d, *J* = 7.9 Hz, 4H, H³ in Py). FT-IR (KBr, cm⁻¹): 415 (m), 457 (w), 476 (m), 490 (s), 617 (w), 635 (w), 669 (w), 700 (m), 733 (m), 754 (s), 768 (s), 968 (vw), 988 (w), 1005 (m), 1024 (w), 1047 (w), 1080 (m), 1121 (w), 1155 (w), 1188 (w), 1231 (vw), 1275 (w), 1281 (w), 1420 (s), 1449 (vs), 1479 (w), 1558 (m), 1578 (s), 1639 (w), 1917 (vw), 2016 (vw), 2957 (w), 3032 (m), 3051 (w), 3073 (w). Calcd. for C₃₂H₂₆As₂Cu₂Br₂N₄ (903.32): C, 42.5; H, 2.9; N, 6.2. Found: C, 42.5; H, 3.0; N, 6.3.

[Cu₂(Py₂AsPh)₂I₂] (**3**)

The mixture of CuI (25 mg, 0.131 mmol) and Py₂AsPh (40 mg, 0.13 mmol) in CH₃CN (1 mL) was stirred at room temperature for 30 min. The formed precipitate was centrifuged and dried in vacuum. White powder. Yield: 105 mg (81%). ¹H NMR (500.13 MHz, CDCl₃, ppm), δ : 9.24 (d, *J* = 5.1 Hz, 4H, H⁶ in Py), 8.37 (s, 4H, H⁴ in Py), 7.69–7.60 (m, 6H, *m*-H and *p*-H in Ph), 7.45 (dt, *J* = 7.8 Hz, *J* = 1.8 Hz, 4H, H⁵ in Py), 7.15 (ddd, *J* = 7.5 Hz, *J* = 5.3 Hz, *J* = 1.3 Hz, 4H, *o*-H in Ph), 7.08 (dt, *J* = 7.9 Hz, *J* = 1.1 Hz, 4H, H³ in Py). FT-IR (KBr, cm⁻¹): 417 (w), 461 (w), 476 (m), 486 (s), 617 (vw), 637 (w), 669 (vw), 700 (m), 745 (vs), 758 (vs), 781 (m), 964 (vw), 988 (w), 1007 (m), 1024 (w), 1049 (m), 1078 (m), 1117 (w), 1159 (m), 1186 (w), 1231 (w), 1269 (w), 1315 (w), 1410 (s), 1420 (s), 1437 (s), 1449 (vs), 1483 (w), 1558 (s), 1578 (s), 1975 (vw), 3015 (w), 3048 (m). Calcd. for C₃₂H₂₆As₂Cu₂I₂N₄ (997.32): C, 38.5; H, 2.6; N, 5.6. Found: C, 38.3; H, 2.6; N, 5.5.

$[Cu_2(Py_2AsPh)_2(CH_3CN)_2](BF_4)_2$ (4)

The mixture of $[Cu(CH_3CN)_4]BF_4$ (25 mg, 0.079 mmol) and Py₂AsPh (25 mg, 0.081 mmol) in CH₃CN (1 mL) was stirred at room temperature for 10 min, to the resulting solution, diethyl ether (1 mL) was then added and the precipitate formed was centrifuged and dried in vacuum. White powder. Yield: 70 mg (89%). FT-IR (KBr, cm⁻¹): 415 (w), 455 (w), 476 (w), 486 (m), 523 (w), 637 (vw), 696 (m), 746 (s), 762 (s), 770 (s), 897 (w), 972 (w), 999 (m), 1011 (s), 1040 (vs), 1059 (vs), 1157 (m), 1186 (w), 1233 (vw), 1288 (w), 1308 (w), 1371 (w), 1423 (s), 1439 (m), 1454 (s), 1483 (w), 1560 (m), 1580 (m), 1979 (vw), 2272 (w), 2307 (w), 2947 (w), 3055 (w), 3096 (w). Calcd. for $C_{36}H_{32}As_2Cu_2N_6B_2F_8$ (999.22): C, 43.3; H, 3.2; N, 8.4. Found: C, 43.2; H, 3.2; N, 8.4.

§3. Single crystal X-ray crystallography

Single crystals of **1–3** were grown by diffusion of Et_2O vapor into CH_3CN (for **2** and **3**) or CH_2Cl_2 (for **1**) solutions, respectively, overnight. Crystals of **4** were grown by slow evaporation of a CH_3CN solution overnight.

X-ray data and refinement details are summarized in Table S1. The data were collected on a Bruker Kappa Apex II CCD diffractometer using ϕ, ω -scans of narrow (0.5°) frames with MoK α radiation (λ = 0.71073 Å) and a graphite monochromator. The structures were solved by direct methods SHELXL97 and refined by a full matrix least-squares anisotropic-isotropic (for H atoms) procedure using SHELXL-2014/7 programs set.^[1] Absorption corrections were applied using the empirical multiscan method with the SADABS program.^[2] The positions of the hydrogen atoms were calculated with the riding model. Note that the crystals of **3** are prone to twinning. Therefore, the collected data for 3 were refined to take into account twinning. The refinement showed the contribution of the main twin is 0.8277(14), the second one is 0.1723(14).

	1	2	3	4
Crystal data	2090739	2090738	2090737	2095153
Chemical formula	$C_{32}H_{26}As_2Cu_2Cl_2N_4$	$C_{32}H_{26}As_2Cu_2Br_2N_4$	$C_{32}H_{26}As_2Cu_2I_2N_4$	$C_{36}H_{32}As_2Cu_2N_6\cdot 2(BF_4)$
M _r	814.39	903.3	997.29	999.21
Crystal system, space group	Monoclinic, P2 ₁ /n	Monoclinic, P2 ₁ /n	Triclinic, P1	Monoclinic, P2 ₁ /n
Temperature (K)	299	296	296	296
a, b, c (Å)	9.2247(19),	9.220(3),	9.0573(11),	8.9008(12),
	9.2436(18),	11.284(4),	9.1282(10),	9.7467(16),
	18.964(4)	16.043(5)	20.279(3)	22.795(4)
β(°)	99.668(9)	96.547(13)	87.224(5)	91.882(5)
V (ų)	1594.0(6)	1658.1(9)	1669.6(4)	1976.5(5)
Ζ	2	4	2	2
μ (mm⁻¹)	3.59	5.70	5.12	2.81
Crystal size (mm)	$0.10\times0.10\times0.02$	$0.30 \times 0.05 \times 0.01$	$0.12\times0.10\times0.08$	$0.40 \times 0.30 \times 0.15$
T_{\min}, T_{\max}	0.761, 0.928	0.719, 0.928	0.695, 0.928	0.531, 0.745
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	16399, 2806, 1718	17017, 3806, 3101	15424, 5853, 4423	21894, 3401, 2305
R _{int}	0.106	0.059	0.061	0.089
(sin θ/λ) _{max} (Å ⁻¹)	0.596	0.651	0.595	0.598
R[F ² > 2σ(F ²)], wR(F ²), S	0.084, 0.200, 1.12	0.034, 0.089, 1.07	0.043, 0.124, 0.72	0.047, 0.114, 1.02
No. of reflections	2806	3806	5853	3401
No. of parameters	190	190	380	282
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	1.05, -0.79	0.48, -0.56	1.48, -0.95	0.44, -0.43

Table S1. X-Ray crystallographic data for 1–4.

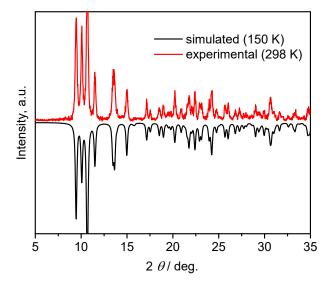


Figure S1. Experimental and simulated PXRD patterns of 1.

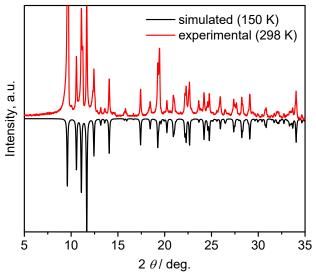


Figure S2. Experimental and simulated PXRD patterns of 2.

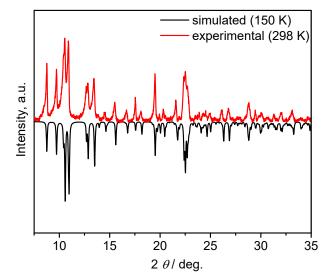


Figure S3. Experimental and simulated PXRD patterns of 3.

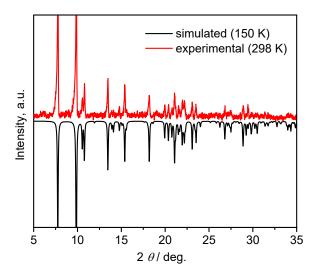
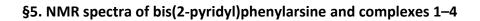
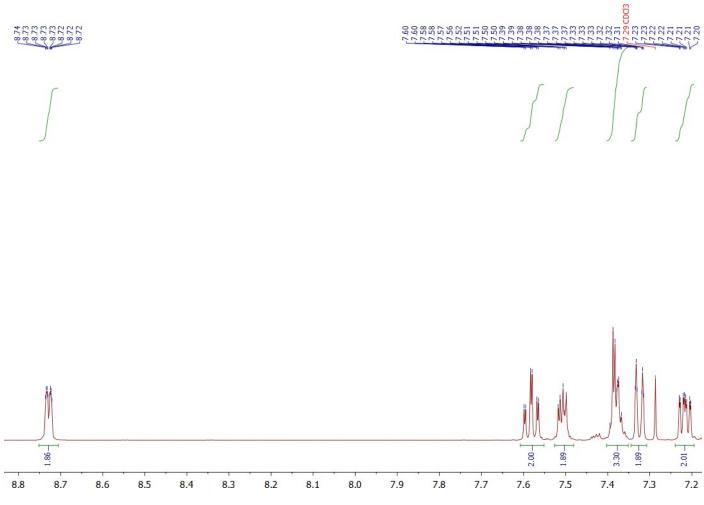
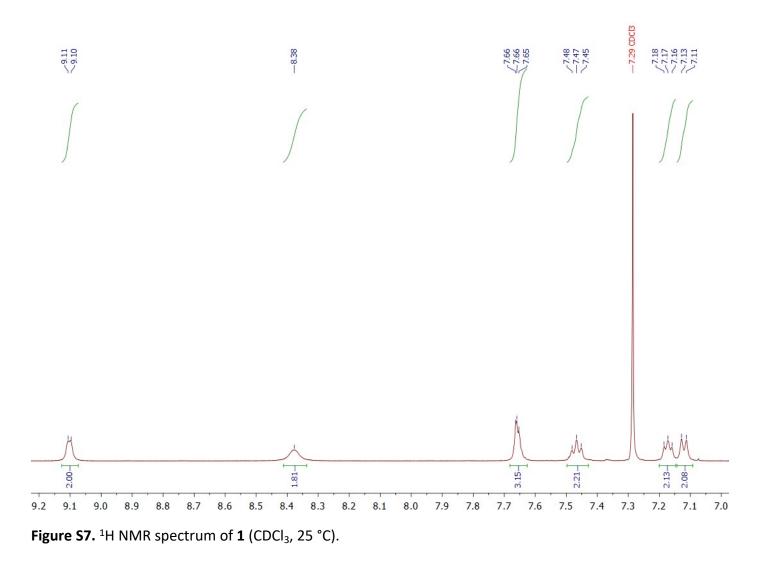
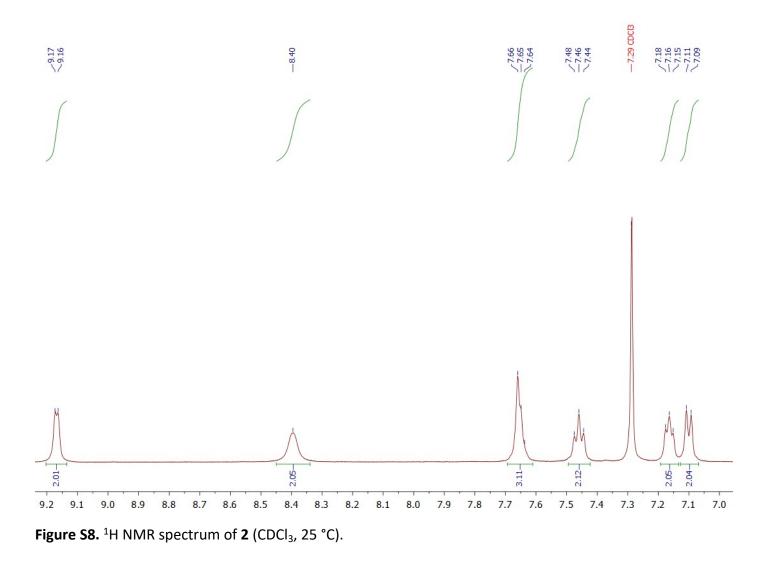
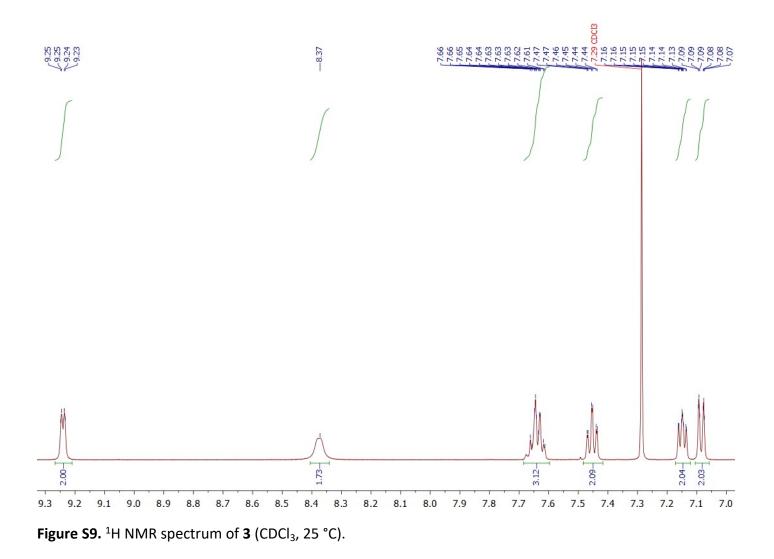



Figure S4. Experimental and simulated PXRD patterns of 4.

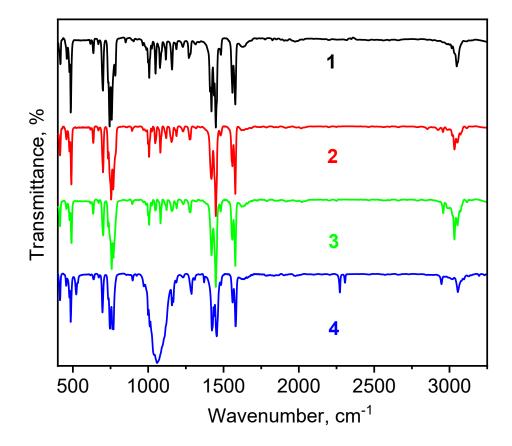

Figure S5. ¹H NMR spectrum of bis(2-pyridyl)phenylarsine (CDCl₃, 25 °C).

Figure S10. FT-IR spectra for the complexes 1-4 in the 500–3250 cm⁻¹ region.

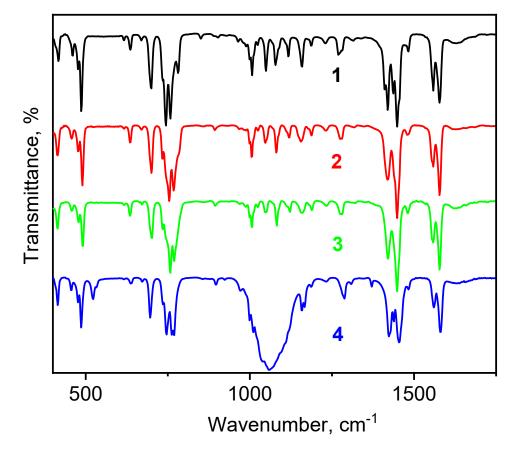
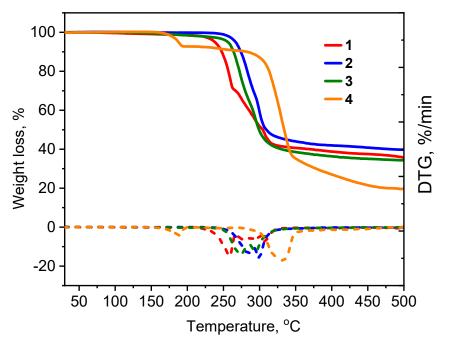
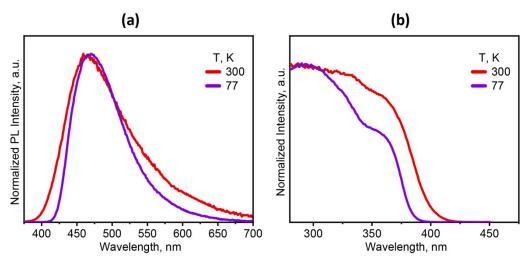


Figure S11. FT-IR spectra for the complexes 1–4 in the fingerprint region.




Figure S12. TGA&DTG curves for 1-4.

§8. Photophysical details

To evaluate singlet-triplet splitting (${}^{\Delta E}ST$) for complexes **1–3**, the experimental τ_{obs} (T) dependences (Fig. 4d in main document) were fitted using Boltzmann type equation (Eq. S1) proposed for TADF model:^[4]

$$\tau_{obs}(T) = (3 + \exp\left(-\frac{\Delta E_{ST}}{k_B T}\right)) / (\frac{3}{\tau_T} + \frac{1}{\tau_S} exp^{[m]}(-\frac{\Delta E_{ST}}{k_B T}))$$
(Eq. S1)

where τ_S and τ_T are the lifetimes of the S₁ and T₁ excited states, respectively, and k_B is the Boltzmann constant. The resulting ΔE_{ST} values are outlined in Table 1 of the main document.

Figure S13. Emission (a) and excitation (b) spectra of **4** at 300 and 77 K. Emission spectra were recorded at λ_{ex} = 350 nm.



Figure S14. Temperature dependent excitation spectra of 1 (λ_{em} = 530 nm).

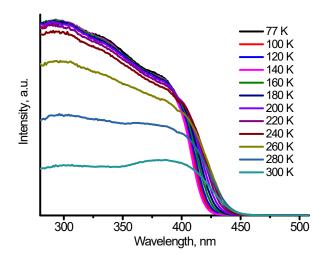
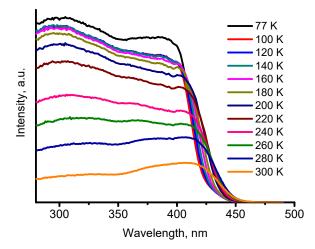
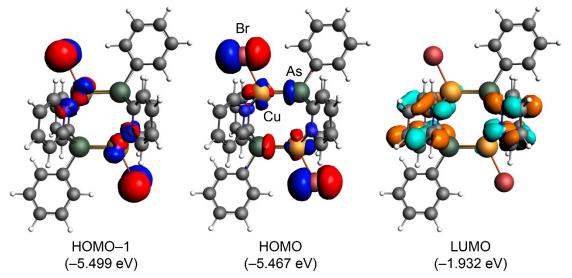
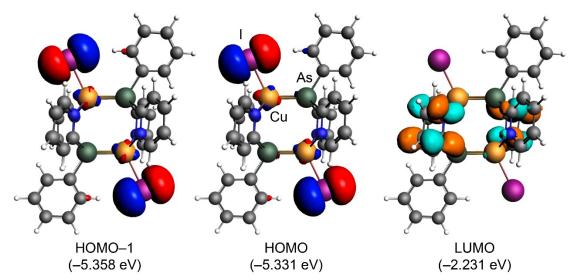


Figure S15. Temperature dependent excitation spectra of 2 (λ_{em} = 520 nm).


Figure S16. Temperature dependent excitation spectra of 3 (λ_{em} = 500 nm).

§9. Computational details

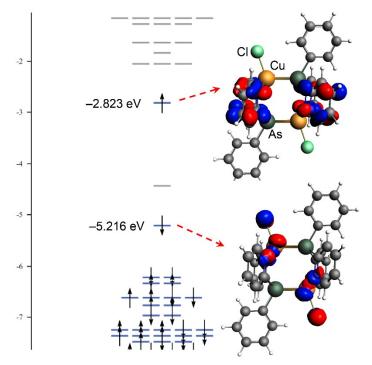

The DFT calculations were performed using the ADF2019^[5] suite with all-electron TZ2P basis set,^[6] B3LYP density functional,^[7] Grimme D3BJ dispersion correction,^[8] and ZORA for scalar relativistic effects.^[9] Electronic excitation energies are found with Davidson's procedure for close-shell systems in a spin-restricted TDDFT calculations with scalar ZORA and no frozen core.^[10]

Figure S17. Frontier orbitals (isovalue of 0.03) in the ground state of $[Cu_2(Py_2AsPh)_2Br_2]$ (2) computed at the B3LYP/ma-ZORA-TZ2P level of theory.

Figure S18. Frontier orbitals (isovalue of 0.03) in the ground state of $[Cu_2(Py_2AsPh)_2I_2]$ (3) computed at the B3LYP/ma-ZORA-TZ2P level of theory.

Figure S19. Single-occupied orbitals (isovalue of 0.03) in the T_1 state of $[Cu_2(Py_2AsPh)_2Cl_2]$ (1) computed at the B3LYP/ma-ZORA-TZ2P level of theory.

λ, nm	f	Transitions (main contributions)	Character
451	0.003	HOMO → LUMO (61.4%) HOMO-1 → LUMO (23.5%)	(M+X)LCT
427	0.0014	HOMO-2 → LUMO (67.2%)	(M+X)LCT
426	0.0511	HOMO-1 → LUMO (58.0%) HOMO → LUMO (22.0%)	(M+X)LCT
418	0.0093	HOMO → LUMO+1 (42.5%) HOMO-2 → LUMO (17.4%) HOMO-1→ LUMO+1 (11.1%)	(M+X)LCT
404	0.0173	HOMO-2 → LUMO+1 (38.4%) HOMO-1 → LUMO+1(37.9%) HOMO → LUMO+1 (13.7%)	(M+X)LCT
402	0.0119	HOMO-2 → LUMO+1 (29.1%) HOMO → LUMO (22.7%) HOMO-1 → LUMO+1 (20.4%) HOMO-1→ LUMO (16.4%)	(M+X)LCT
389	0.0031	HOMO → LUMO+1 (32.8%) HOMO → LUMO (25.6%) HOMO-1 → LUMO+1 (25.6%)	(M+X)LCT
386	0.0075	HOMO-1 → LUMO+1 (31.6%) HOMO → LUMO (30.7%) HOMO → LUMO+1 (13.0%)	(M+X)LCT
383	0.0139	HOMO-1 → LUMO(55.7%) HOMO-1 → LUMO+1 (20.6%)	(M+X)LCT

Table S2. Lowest singlet-singlet transitions (f > 0.001) in **1** calculated at TD-B3LYP-TZ2P level (gas).

		HOMO-2 \rightarrow LUMO+1 (14.0%)	
		HOMO → LUMO+1 (47.5%)	
381	0.0095	HOMO-1 \rightarrow LUMO+1 (23.3%)	(M+X)LCT
		HOMO-2 \rightarrow LUMO (10.2%)	
370	0.0016	HOMO-2 → LUMO (78.3%)	(M+X)LCT
		HOMO → LUMO+2 (44.7%)	
368	0.0016	HOMO-2 \rightarrow LUMO+1 (24.3%)	(M+X)LCT
		HOMO-1 \rightarrow LUMO+2 (13.0%)	
		HOMO-2 \rightarrow LUMO+1 (60.5%)	
367	0.0083	HOMO → LUMO+2 (18.8%)	(M+X)LCT
		HOMO-2 \rightarrow LUMO (7.1%)	

Table S3. Lowest singlet-singlet transitions (f > 0.0001) in **2** calculated at TD-B3LYP-TZ2P level (gas).

λ, nm	f	Transitions (main contributions)	Character
445 0.00	0.0012	82.9% HOMO-1 → LUMO	(M+X)LCT
	0.0013	9.8% HOMO-1 → LUMO+1	
427	0.0438	75.0% HOMO → LUMO	
		11.5% HOMO-1 → LUMO+1	(M+X)LCT
		34.5% HOMO-1 → LUMO+1	
388	0.0073	31.4% HOMO-2 → LUMO	(M+X)LCT
		16.1% HOMO → LUMO	
419	0.0008	53.7% HOMO-2 → LUMO	
415	0.0008	27.7% HOMO-1 → LUMO+1	(M+X)LCT
411	0.0299	76.1% HOMO → LUMO+1	(M+X)LCT
411	0.0299	16.0% HOMO → LUMO	
405	0.0021	68.5% HOMO-2 → LUMO+1	(M+X)LCT
05	0.0021	21.8% HOMO → LUMO	
	0.0062	56.5% HOMO → LUMO	
391		16.9% HOMO → LUMO+1	(M+X)LCT
		16.7% HOMO-2 → LUMO+1	
387	0.0056	69.8% HOMO-1 → LUMO	(M+X)LCT
	0.0050	16.2% HOMO-1 → LUMO+1	
384	0.0021	77.4% HOMO-1 → LUMO+1	(M+X)LCT
504		8.1% HOMO-1 →LUMO	
382	0.0111	74.1% HOMO → LUMO+1	(M+X)LCT
502		7.3% HOMO-2 → LUMO	
372	0.0004	86.2% HOMO-2 → LUMO	(M+X)LCT
		9.4% HOMO-2 → LUMO+1	
366	0.0077	90.5% HOMO-2 → LUMO+1	(M+X)LCT
365	0.0014	76.7% HOMO-1 → LUMO+2	(M+X)LCT

Table S4. Lowest singlet-singlet transitions (f > 0.0001) in **3** calculated at TD-B3LYP-TZ2P level (gas).

λ <i>,</i> nm	f	Transitions (main contributions)	Character
500	0.0017	73.3% HOMO-1 → LUMO 9.7% HOMO → LUMO	(M+X)LCT
491	0.0189	80.0% HOMO → LUMO	(M+X)LCT

		10.9% HOMO-1 → LUMO	
463	0.011	77.7% HOMO-2 → LUMO	(M+X)LCT
		7.0% HOMO-1 → LUMO+1	
		39.4% HOMO-1 → LUMO	
458	0.0061	19.7% HOMO → LUMO+1	(M+X)LCT
		11.3% HOMO-1 → LUMO	
		35.3% HOMO → LUMO	
454	0.0045	27.1% HOMO → LUMO+1	(M+X)LCT
		16.3% HOMO-1 → LUMO+1	
445	0.0112	44.1% HOMO → LUMO	
445		37.0% HOMO → LUMO+1	(M+X)LCT
439	0.0024	65.6% HOMO-1 → LUMO	
459		14.0% HOMO-1 → LUMO+1	(M+X)LCT
427	0.0127	57.2% HOMO-2 → LUMO+1	
427		23.9% HOMO → LUMO+1	(M+X)LCT
		56.3% HOMO → LUMO+1	
422	0.0062	17.7% HOMO-2 → LUMO+1	(M+X)LCT
		10.7% HOMO-2 → LUMO	
415	0.0004	75.0% HOMO-1 → LUMO+1	
415		15.5% HOMO-1 → LUMO+1	(M+X)LCT
410	0.0096	75.3% HOMO-2 → LUMO	(M+X)LCT
		14.9% HOMO-2 → LUMO+1	
402	0.0049	84.5% HOMO-3 → LUMO	(M+X)LCT
389	0.0127	88.9% HOMO-2 → LUMO+1	(M+X)LCT
	I	1	1

§10. References

- [1] R. Betz, M.M. Reichvilser, E. Schumi, C. Miller, P. Klüfers, ZAAC, 2009, 635, 1204.
- [2] G.M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.
- [3] SADABS, v. 2008-1, Bruker AXS, Madison, WI, USA, 2008.
- [4] Highly Efficient OLEDs Materials Based on Thermally Activated Delayed Fluorescence, Ed. Yersin, H.; Wiley-VCH, Weinheim, 2019.
- [5] G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem., 2001, 22, 931.
- [6] E. van Lenthe, E.J. Baerends, J. Comput. Chem., 2003, 24, 1142.
- [7] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- [8] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1457.
- [9] E. van Lenthe, A.E. Ehlers, E.J. Baerends, J. Chem. Phys., 1999, 110, 8943.
- [10] S.J.A. van Gisbergen, J.G. Snijders, E.J. Baerends, Comput. Phys. Commun., 1999, 118, 119.