Three novel metal-organic frameworks with different coordination modes for trace detection of anthrax biomarkers

Zhenzhong Cong,^[a] Mingchang Zhu,^[b] Ying Zhang,^[b] Wei Yao,^[a] Marina Kosinova,^[c] Vladimir P. Fedin,^[c] Shuangyan Wu^{*[b]} and Enjun Gao^{*[a,b]}

parameter	$\{[Ca_3(ddpa)\cdot 7H_2O]\}_n$
Formula	$C_{24}H_{22}Ca_{3}O_{22}$
Formula weight	782.65 g/mol
Crystal system	Monoclinic
Space group	P2 ₁ /c
<i>a</i> / Å	7.9374(2)
b / Å	22.5281(5)
<i>c</i> / Å	19.6837(5)
α / °	90
eta / °	92.9800(10)
γ / °	90
V (Å ³)	3514.97(15)
Z	4
$ ho_{calc}g/cm^3$	1.479
The Range for data Collection	4.144 to 52.742
Data / restraints / parameters	2736 / 7 / 210
Independent reflections	$7169[R_{int}=0.0493, R_{sigma}=0.0282]$
Completeness / %	99.9%
GOF on F^2	1.082
Final R indices(I > $2\sigma(I)$)	$R_1 = 0.0548, wR_2 = 0.1643$
R indices (all data)	$R_1 = 0.0662, wR_2 = 0.1751$
Largest diff. peak / hole / eÅ-3	1.91 / -0.70

Table S1 Crystallographic data of MOF 1

 $_{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|$. ${}^{b}wR_{2} = [\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{0}{}^{2})^{2}]^{1/2}$

Bond	Length/Å	Bond	Length/Å
Ca1-O111	2.416(2)	Ca1-O8 ³	2.441(2)
Cal-O13	2.484(2)	Ca1-O2 ⁴	2.382(4)
Ca1-O7 ³	2.403(2)	Ca1-O3 ⁵	2.457(2)
Ca1-O15	2.562(2)	Cal O14	2.664(2)
Ca2-O8 ⁶	2.504(2)	Ca2-O13 ⁷	2.353(2)
Ca2-O20	2.424(3)	Ca2-O21	2.328(2)
Ca2-O9 ⁶	2.462(2)	Ca2-O6	2.340(3)
Ca2-C14 ⁶	2.828(3)	Ca2-O22	2.417(7)
Ca3-O11 ²	2.725(2)	Ca3-O15	2.402(2)
Ca3-O14	2.447(2)	Ca3-O12 ²	2.468(3)
Ca3-O19	2.392(3)	Ca3-O18	2.370(3)
Ca3-O16	2.496(4)	Ca3-O17	2.443(5)
Angle	∞/°	Angle	ω/°
O7 ³ -Ca1-O14	136.50(8)	O18-Ca3-O111	76.77(10)
O111-Ca1-O83	74.76(8)	O18-Ca3-O15	138.13(11)
O111-Ca1-O13	95.96(8)	O18-Ca3-O14	78.68(12)
O111-Ca1-O34	137.10(8)	O18-Ca3-O121	84.50(12)
O111-Ca1-O15	68.09(8)	O18-Ca3-O19	120.69(12)
O111-Ca1-O14	73.73(7)	O18-Ca3-O16	135.18(17)
C10-C11-C13	118.8(3)	O18-Ca3-O17	73.33(15)
O8 ³⁻ Ca1-O13	71.83(7)	O16-Ca3-O111	111.98(11)
O8 ³ -Ca1-O3 ⁴	140.50(8)	O17-Ca3-O111	139.05(12)
O8 ³⁻ Ca1-O15	142.31(8)	O17-Ca3-O14	126.77(14)
O8 ³⁻ Ca1-O14	108.68(8)	O17-Ca3-O121	99.42(13)
O3 ⁴⁻ Ca1-O14	71.41(8)	O17-Ca3-O16	73.46(17)
O13-Ca1-O15	117.39(8)	O14-Ca3-O121	122.01(8)
O13-Ca1-O14	50.52(7)	O21-Ca2-O86	152.51(9)
O34-Ca1-O13	80.57(8)	O21-Ca2-O13 ⁷	87.26(9)
O2 ⁵ -Ca1-O11 ¹	91.88(8)	O21-Ca2-O20	83.49(9)
O2 ⁵ -Ca1-O8 ³	100.12(8)	O21-Ca2-O96	152.15(9)
O2 ⁵⁻ Ca1-O13	166.74(8)	O21-Ca2-O6	96.26(10)
O2 ⁵ -Ca1-O7 ³	74.83(8)	O96-Ca2-O86	52.92(7)
O2 ⁵ -Ca1-O3 ⁴	100.84(8)	O21-Ca2-O22	76.75(19)
O2 ⁵ -Ca1-O15	75.50(8)	O15-Ca3-O14	73.08(8)
O2 ⁵⁻ Ca1-O14	142.53(8)	O15-Ca3-O121	84.96(9)
O3 ⁴⁻ Ca1-O15	75.74(8)	O13 ⁷⁻ Ca2-O8 ⁶	72.94(8)
O7 ³ -Ca1-O11 ¹	141.03(8)	O13 ⁷ -Ca2-O20	84.41(8)
O7 ³⁻ Ca1-O8 ³	71.94(8)	O13 ⁷⁻ Ca2-O9 ⁶	98.97(9)

Table S2 Selected bond lengths (Å) and angles (°) for the $MOF\,1$

O7 ³⁻ Ca1-O13	92.43(8)	O15-Ca3-O16	78.39(14)	
O7 ³⁻ Ca1-O3 ⁴	81.81(8)	O15-Ca3-O17	148.49(14)	
O7 ³⁻ Ca1-O15	138.30(8)	O13 ⁷ -Ca2-O2 ²	85.3(2)	
O20-Ca2-O86	75.93(8)	O14-Ca3-O11 ¹	72.17(7)	
O13 ⁷ -Ca2-O20	84.41(8)	O22-Ca2-O96	76.76(18)	
¹ +X,1/2-Y,-1/2+Z;	² 1-X,-1/2+Y,1/2-Z; ³ 2	-X,-1/2+Y,1/2-Z; 41+X,+Y,+Z;	⁵ 1+X,1/2-Y,-1/2+Z;	6_
1+X,+Y,+Z; ⁷ 1-X,1/2+Y,1/2-Z; ⁸ +X,1/2-Y,1/2+Z; ⁹ 2-X,1/2+Y,1/2-Z; ¹⁰ -1+X,1/2-Y,1/2+Z				

parameter	${[Cd_3(ddpa)\cdot 6H_2O]\cdot 4H_2O}_n$
Formula	$C_{24}H_{28}Cd_{3}O_{25}$
Formula weight	1053.66 g/mol
Crystal system	Monoclinic
Space group	C2/c
<i>a /</i> Å	18.184(2)
b / Å	13.6565(13)
<i>c</i> / Å	14.5002(15)
α/°	90
eta / °	113.959(3)
γ / °	90
V (Å ³)	3290.6(6)
Z	4
$\rho_{calc}g/cm^3$	2.127
The Range for data Collection	5.52 to 50.064
Data / restraints / parameters	2888/0/238
Independent reflections	$2888[R_{int}=0.0690, R_{sigma}=0.0571]$
Completeness / %	99.9%
GOF on F^2	1.084
Final R indices(I > $2\sigma(I)$)	$R_1 = 0.0388, wR_2 = 0.0902$
R indices (all data)	$R_1 = 0.0608, wR_2 = 0.1009$
Largest diff. peak / hole / eÅ-3	1.05/-0.60

Table S3 Crystallographic data of MOF 2

 $_{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. \ ^{b}wR_{2} = [\sum w(F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2})^{2}]^{1/2}$

Table S4 Selected bond lengths (Å) and angles (°) for the $MOF2$

Bond	Length/Å	Bond	Length/Å
Cd1-O3 ³	2.281(4)	Cd2-O1 ⁶	2.328(4)

Cd1-O3	2.281(4)	Cd2-O2 ⁶	2.409(4)
Cd1-O7 ⁴	2.321(4)	Cd2-O4 ⁷	2.225(4)
Cd1-O7 ⁵	2.321(4)	Cd2-O6	2.208(4)
Cd1-O10 ³	2.232(5)	Cd2-O8	2.323(5)
Cd1-O10	2.232(5)	Cd2-O9	2.419(4)
Angle	∞/°	Angle	∞/°
O47-Cd2-O8	90.86(18)	O10 ³ -Cd1-O3	88.93(16)
O4 ⁷ -Cd2-O9	82.38(15)	O10 ³ -Cd1-O3 ³	91.07(16)
O47-Cd2-O26	146.71(15)	O10-Cd1-O3 ³	88.93(16)
O6-Cd2-O16	141.74(15)	O10-Cd1-O3	91.07(16)
O6-Cd2-O2 ⁶	92.34(16)	O10 ³ -Cd1-O7 ⁴	88.20(16)
O6-Cd2-O47	116.92(16)	O10 ³ -Cd1-O7 ⁵	91.80(17)
O6-Cd2-O8	117.00(17)	O10-Cd1-O7 ⁴	91.79(16)
O6-Cd2-O9	81.98(15)	O10-Cd1-O7 ⁵	88.21(16)
O47-Cd2-O16	91.83(15)	O10 ³ -Cd1-O10	180
O8-Cd2-O1 ⁶	85.05(16)	O7 ⁵ -Cd1-O7 ⁴	180
O8-Cd2-O2 ⁶	89.24(18)	O16-Cd2-O26	55.02(14)
O8-Cd2-O9	160.76(16)	O16-Cd2-O9	77.22(15)
O3 ³ -Cd1-O3	180.00(12)	O3-Cd1-O7 ⁵	90.09(14)
O3 ³ -Cd1-O7 ⁴	90.08(14)	O26-Cd2-O9	86.71(16)
O3-Cd1-O7 ⁴	89.91(14)	O3 ³ -Cd1-O7 ⁵	89.92(14)
¹ 1/2+X,1/2-Y,1/2+Z; ² 1-X	X,+Y,1/2-Z; ³ 1-X,2-Y,1-Z	; ⁴ 1-X,1-Y,1-Z; ⁵ +X,1+Y,+Z	Z; ⁶ -1/2+X,1/2-Y,-1/2+Z;
⁷ +X,-1+Y,+Z			

Table S5 Crystallographic data of MOF 3

parameter	$\{[Zn_3(ddpa)\cdot 2H_2O]\}_n$
Formula	$C_{24}H_{13}O_{17}Zn_3$
Formula weight	769.45 g/mol
Crystal system	Monoclinic
Space group	$P2_1/n$
<i>a</i> / Å	10.2364(5)
b / Å	13.3601(8)
<i>c</i> / Å	29.3596(18)
lpha / °	90
eta / °	93.623(2)
γ / °	90
V (Å ³)	4007.2(4)
Ζ	4
$ ho_{calc}g/cm^3$	1.275

The Range for data Collection	4.304 to 52.042
Data / restraints / parameters	7900/19/385
Independent reflections	$7900[R_{int}=0.0551, R_{sigma}=0.0298]$
Completeness / %	99.9%
GOF on F^2	1.077
Final R indices(I > $2\sigma(I)$)	$R_1 = 0.0578, wR_2 = 0.1743$
R indices (all data)	$R_1 = 0.0706, wR_2 = 0.1877$
Largest diff. peak / hole / eÅ-3	2.18/-1.14

 $\frac{1}{aR_1 = \sum ||F_0| - |F_c|| / \sum |F_0| \cdot {}^{b}wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}}$

Table S6 Selected bond lengths (Å) and angles (°) for the ${\bf MOF~3}$

Bond	Length/Å	Bond	Length/Å
Zn1-O1 ¹	1.983(3)	Zn2-O11 ⁵	1.976(3)
Zn1-O4	2.010(4)	Zn2-O17	1.945(3)
Zn1-O6 ²	2.375(4)	Zn3-O3 ⁶	2.105(5)
Zn1-O13 ³	2.063(4)	Zn3-O9 ³	2.107(5)
Zn1-O17 ²	2.003(3)	Zn3-O14	2.038(6)
Zn2-O7	1.946(3)	Zn3-O15	2.087(6)
Zn2-O8 ⁴	1.964(3)	Zn3-O16	2.075(6)
Zn3-O177	2.080(3)		
Angle	ω/°	Angle	ω/°
O1 ¹ -Zn1-O4	104.18(16)	O15-Zn3-O9 ³	86.5(3)
O1 ¹ -Zn1-O6 ²	84.68(15)	O16-Zn3-O36	88.8(2)
O1 ¹ -Zn1-O13 ³	97.53(15)	O16-Zn3-O9 ³	86.2(2)
O1 ¹ -Zn1-O17 ²	134.90(15)	O16-Zn3-O15	89.9(2)
O4-Zn1-O6 ²	86.45(15)	O16-Zn3-O177	179.28(19)
O4-Zn1-O13 ³	96.09(16)	O17 ⁷ -Zn3-O3 ⁶	90.64(16)
O13 ³ -Zn1-O6 ²	176.10(15)	O17 ⁷ -Zn3-O9 ³	94.19(16)
O17 ² -Zn1-O4	118.83(14)	O17 ⁷ -Zn3-O15	90.69(18)
O17 ² -Zn1-O6 ²	85.04(14)	O15-Zn3-O3 ⁶	172.0(2)
O17 ² -Zn1-O13 ³	91.14(15)	Zn1 ² -O17-Zn3 ⁹	105.50(14)
O7-Zn2-O8 ⁴	105.80(15)	Zn2-O17-Zn1 ²	119.08(16)
O7-Zn2-O11 ⁵	106.57(15)	Zn2-O17-Zn39	114.66(15)
O84-Zn2-O115	100.65(16)	O14-Zn3-O36	95.0(2)
O17-Zn2-O7	119.66(14)	O14-Zn3-O9 ³	176.5(2)
O17-Zn2-O8 ⁴	115.09(14)	O14-Zn3-O15	92.9(2)
O17-Zn2-O11 ⁵	107.12(14)	O14-Zn3-O16	90.4(2)
O3 ⁶ -Zn3-O9 ³	85.5(2)	O14-Zn3-O177	89.26(18)
¹ 1+X,+Y,+Z; ² 2-X,1-Y,1-Z;	³ 3/2-X,1/2+Y,3/2-Z;	⁴ 2-X,-Y,1-Z; ⁵ 1-X,-Y,1-Z;	⁶ 3/2-X,-1/2+Y,3/2-Z; ⁷ -
1/2+X,1/2-Y,1/2+Z			

Figure S2 PXRD patterns of MOFs 1 and 2 after immersion in water for 24h.

Figure S3 PXRD patterns of **MOFs 1** and **2** after treated by aqueous solutions with various pH values from 2 to 13.

Figure S4 The TGA curves of **MOFs 1-3**.

Figure S5 The plots of concentration vs. intensity and at low concentration with simulation equations of **MOFs 1-3**.

Figure S6 PXRD patterns of MOFs 1-3 after detecting DPA.

Figure S7 FT-IR spectra of MOFs 1-3.

Figure S8 Fluorescence emission of ligand before and after PGA addition.

Figure S9 The comparison of UV spectra before and after addition of DPA.

Methods	Sensor	LOD (µM)	Ref.
Fluorometric	3	0.248	S1
Fluorometric	6	0.874	S1
Fluorometric	9	2.277	S1
Colorimetric,	EBT-Eu ³⁺	2	S2
fluorometric			
Fluorometric	LP-Eu ³⁺	0.3	S3
Fluorometric	Pdots-Tb ³⁺	0.2	S4
Colorimetric,	PV-Tb ³⁺	5	S5
fluorometric			
Fluorometric	GNPs-Tb ³⁺	1	S6
	and Eu ³⁺		
Colorimetric,	BODIPY-Cu ²⁺	2	S7
fluorometric			
Colorimetric	UCNPs-	0.9	S8
	TPP/EBT		
fluorometric	MOF 1	1.01	This work
fluorometric	MOF 2	1.17	This work
fluorometric	MOF 3	2.07	This work

Table S7 A comparison of limit of detection (LOD) of various methods for sensing DPA.

REFERENCE

- S1 M.-L. Shen, B. Liu, L. Xu and H. Jiao, Journal of Materials Chemistry C, 2020, 8, 4392-4400.
- S2 M. D. Yilmaz and H. A. Oktem, Anal. Chem., 2018, 90, 4221.
- S3 H. Seo, S. Singha and K. H. Ahn, Asian J. Org. Chem., 2017, 6, 1257.
- S4 Q. Li, K. Sun, K. W Chang, J. B. Yu, D. T. Chiu, C. F. Wu and W. P. Qin, Anal. Chem., 2013, 85, 9087.
- S5 K. J. Clear, S. Stroud and B. D. Smith, Analyst. 2013, 138, 7079.
- S6 M. Donmez, M. D. Yilmaz and B. Kilbas, J. Hazard. Mater., 2017, 324, 593.
- S7 Y. Cetinkaya, M. N. Z. Yurt, H. A. Oktem and M. D. Yilmaz, J. Hazard. Mater., 2019, 377, 299.
- S8 Z. H. Chen, X. Liu, S. Q. Zhang, T. Yang, M. L. Chen and J. H. Wang, Anal. Chem., 2019, 91, 12094.