Supplementary Information

Role of intramolecular hydrogen bonding in the redox chemistry of hydroxybenzoate-bridged paddlewheel diruthenium(II, II) complexes

Wataru Kosaka,^{a,b} Yudai Watanabe,^b Kinanti Hantiyana Aliyah,^b and Hitoshi Miyasaka*^{a,b}

^a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

^b Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

Corresponding author* Prof. Dr. Hitoshi Miyasaka Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan E-mail: <u>miyasaka@imr.tohoku.ac.jp</u> Tel: +81-22-215-2030 FAX: +81-22-215-2031

Contents for SI

Contents for SI		•		•	•	S2
Table S1.	Crystallographic data	•	•	•	•	S 3
Table S2.	Magnetic parameters	•	•	•	•	S4
Fig. S1.	Temperature dependence of χ and χT	•	•	•	•	S5
Fig. S2.	Molecular structures focused on intermole	cular hyd	drogen bo	ond	•	S6
Table S3.	Estimated energy levels of π^* - and δ^* -cha	racteristi	c orbitals		•	S 7
Table S4.	Estimated energy levels for the hypothetic	al structu	ıral mode	1	•	S 8
Fig. S3.	Frontier orbitals associated with π^* and δ^3	* orbitals	•	•	•	S 9
Fig. S4.	Energy diagrams of frontier orbitals assoc	iated with	h π^* and	δ* orbita	ls and	
	Mulliken charge		•	•		S13
Table S5.	Difference of Mulliken charge on hydroxy	-substitu	ted benzo	oate	•	S17

	<i>o</i> -OH	<i>m</i> -OH	2,3-(OH) ₂	2,4-(OH)2	2,5-(OH) ₂	2,6-(OH)2	3,4-(OH)2
formula	$C_{40}H_{32}F_{12}O_{12}Ru_2$	$C_{48}H_{48}F_{12}O_{14}Ru_2$	$C_{40}H_{32}F_{12}O_{14}Ru_2$	C48H48F12O16Ru2	C48H48F12O16Ru2	$C_{40}H_{32}F_{12}O_{14}Ru_2$	C56H64F12O18Ru2
formula weight	1134.81	1279.02	1166.79	1311.00	1311.00	1166.79	1455.21
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	triclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	$P2_{1}/n$
<i>a</i> / Å	10.9274(3)	12.7745(4)	11.5640(3)	13.7407(5)	9.2767(2)	9.5745(4)	18.1637(6)
<i>b</i> / Å	14.1299(2)	19.5988(4)	21.2804(5)	8.5407(3)	11.2427(2)	10.7072(4)	8.5969(3)
<i>c</i> / Å	14.5991(4)	10.8663(3)	9.1600(2)	22.0232(8)	25.2696(4)	10.8653(4)	20.5738(7)
lpha / deg	90	90	90	90	99.3040(10)	110.185(4)	90
β / deg	110.951(3)	112.948(3)	101.954(2)	100.872(3)	99.0110(10)	92.607(4)	111.700(4)
γ/\deg	90	90	90	90	96.6480(10)	96.466(4)	90
$V/\text{ Å}^3$	2105.12(10)	2505.23(13)	2205.27(9)	2538.15(16)	2541.67(8)	1034.55(7)	2984.96(19)
Ζ	2	2	2	2	2	1	2
crystal size / mm ³	0.17×0.14×0.09	0.18×0.12×0.05	0.21×0.12×0.03	0.15×0.12×0.02	0.32×0.22×0.10	0.38×0.10×0.03	0.26×0.16×0.01
T / K	103(1)	103(1)	93(1)	93(1)	93(1)	93(1)	93(1)
$D_{ m calc}$ / $ m g\cdot cm^{-3}$	1.923	1.695	1.757	1.715	1.713	1.873	1.619
F_{000}	1128.00	1288.00	1160.00	1320.00	1320.00	580.00	1480.00
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
μ (Mo K α) / cm ⁻¹	8.330	7.130	8.010	7.090	7.080	8.540	6.140
data measured	13487	18663	17129	22890	20134	8630	23473
data unique	3770	5567	5018	5673	11151	4591	6840
$R_{ m int}$	0.0143	0.0269	0.0128	0.0258	0.0161	0.0333	0.0396
no. of observations	3770	5567	5018	5673	11151	4591	6840
no. of variables	298	343	328	354	707	309	271
$R1 (I > 2.00 \sigma(I))^a$	0.0254	0.0262	0.0210	0.0284	0.0556	0.0330	0.0538
R (all reflections) ^{<i>a</i>}	0.0258	0.0285	0.0222	0.0344	0.0585	0.0364	0.0668
wR2 (all	0.0663	0.0683	0.0541	0.0697	0.1267	0.0862	0.1375
reflections) ^b							
GOF	1.125	1.053	1.055	1.049	1.042	1.058	1.132
CCDC No.	2121064	2121065	2121066	2121067	2121068	2121069	2121070

 Table S1. Crystallographic Data.

 $\overline{{}^{a}R1 = R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|} \cdot {}^{b}wR2 = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Compound	<i>D</i> [K]	$\chi_{\text{TIP}} [\times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}]$	ho [× 10 ⁻³]
<i>о</i> -ОН	404.0(3)	49.1(14)	6.41(1)
<i>m</i> -OH	357.4(6)	58(3)	40.7(2)
2,3-(OH)2	389.0(9)	51(3)	41.2(5)
2,4-(OH) ₂	370.3(9)	45(6)	25.4(2)
2,5-(OH) ₂	374.3(5)	94(6)	5.069(9)
2,6-(OH)2	406.8(9)	29(2)	83.9(6)
3,4-(OH)2	368(3)	56(20)	67.9(7)

Table S2. Magnetic parameters of $\{\text{Ru}_2^{\text{II},\text{II}}((\text{OH})_x\text{PhCO}_2)_2[2,6-(\text{CF}_3)_2\text{PhCO}_2]_2(\text{THF})_2\}$ compounds obtained from the best-fit of χ vs. *T* data using a Curie equation for S = 1 with g = 2.00 (fix) and zJ' = 0 (fix).

Fig. S1. Temperature dependence of χ (\circ) and χT (\Box) for *o*-OH, (a), *m*-OH (b), **2,3-(OH)**₂ (c), **2,4-(OH)**₂ (d), **2,5-(OH)**₂ (e), **2,6-(OH)**₂ (f), and **3,4-(OH)**₂ (g), where the red solid lines represent simulated curves based on a Curie paramagnetic model with *S* = 1 taking into account zero-field splitting (*D*), temperature-independent paramagnetism (χ _{TIP}), and impurity with *S* = 3/2 (ρ).

Fig. S2. Molecular structures focused on intermolecular hydrogen bond; *m*-OH (a), *p*-OH (b), **2,3**-(OH)₂ (c), **2,4**-(OH)₂ (d), **2,5**-(OH)₂ (unit 1) (e), **2,5**-(OH)₂ (unit 2) (f), and **3,4**-(OH)₂ (g). Red, gray, green, light brown, and purple represent O, C, F, H, and Ru, respectively. Intermolecular hydrogen bond is depicted in blue dotted line.

Electron	Orbital	<i>o</i> -OH	<i>m</i> -OH	<i>р</i> -ОН	2,3-(OH)2	2,4-(OH) ₂	2,5-(OH) ₂	2,5-(OH) ₂	2,6-(OH)2	3,4-(OH)2
character	character			_			Unit 1	Unit 2		
β	π*	-2.03016	-1.85025	-1.76411	-2.10068	-2.02852	-2.10973	-1.99246	-2.27442	-1.82290
	π^*	-2.10214	-1.91732	-1.81704	-2.19768	-2.09253	-2.27244	-2.14066	-2.37525	-1.87040
	δ*	-4.58993	-4.39969	-4.28771	-4.6716	-4.56404	-4.71222	-4.63712	-4.85384	-4.35035
α	δ*	-5.01294	-4.82229	-4.71104	-5.09395	-4.98743	-5.13418	-5.06134	-5.27588	-4.77383
	π^*	-5.19623	-5.02057	-4.92953	-5.25951	-5.19147	-5.29438	-5.13925	-5.43116	-4.99432
	π^*	-5.2867	-5.10610	-4.99616	-5.38148	-5.27495	-5.47512	-5.32988	-5.56303	-5.04974

Table S3. Estimated energy levels (eV) of π^* - and δ^* -characteristic orbitals for heteroleptic [Ru₂^{II,II}] complexes.

Electron	Orbital	<i>o</i> -OH	2,3-(OH) ₂	2,4-(OH) ₂	2,5-(OH) ₂	2,5-(OH) ₂	2,6-(OH) ₂
character	character				Unit 1	Unit 2	
β	π*	-1.55286	-1.55029	-1.58721	-1.60997	-1.51781	-1.34864
	π*	-1.58969	-1.60854	-1.60468	-1.81191	-1.67632	-1.37136
	δ*	-4.07649	-4.08802	-4.07787	-4.21542	-4.14782	-3.85097
α	δ*	-4.49935	-4.51079	-4.50124	-4.63691	-4.57198	-4.27336
	π*	-4.71551	-4.71382	-4.74478	-4.77797	-4.65971	-4.47866
	π^*	-4.76044	-4.77244	-4.76895	-5.01527	-4.85819	-4.53299

Table S4. Estimated energy levels (eV) of π^* - and δ^* -characteristic orbitals of the heteroleptic [Ru₂^{II,II}] complexes obtained by DFT calculation for the hypothetical structural models without intra-molecular hydrogen bond.

Fig. S3. Frontier orbitals associated with π^* and δ^* orbitals for *m*-OH (a) and *p*-OH (b), and their energy levels (eV), where δ^* for b electron corresponds to HOMO level.

Fig. S3 (continued). Frontier orbitals associated with π^* and δ^* orbitals for 2,3-(OH)₂ (c) and 2,4-(OH)₂ (d), and their energy levels (eV), where δ^* for b electron corresponds to HOMO level.

Fig. S3 (continued). Frontier orbitals associated with π^* and δ^* orbitals for **2,5-(OH)**₂ (unit 1) (e) and **2,5-(OH)**₂ (unit 2) (f), and their energy levels (eV), where δ^* for b electron corresponds to HOMO level.

Fig. S3 (continued). Frontier orbitals associated with π^* and δ^* orbitals for 2,6-(OH)₂ (g) and 3,4-(OH)₂ (h), and their energy levels (eV), where δ^* for b electron corresponds to HOMO level.

Fig. S4. Energy diagrams of frontier orbitals associated with π^* and δ^* orbitals for 2,3-(OH)₂ (a) and 2,4-(OH)₂ (c) obtained by DFT calculation for the structural models with (left) or without (right) intra-molecular hydrogen bond; a part of structural model of 2,3-(OH)₂ (b) and 2,4-(OH)₂ (d) subjected to DFT calculation; actual (left) or hypothetical (right) crystal structure with or without intra-molecular hydrogen bond, respectively. Attached digits indicate the value of Mulliken charge. Another bridging (OH)_xPhCO₂⁻ and 2,6-(CF₃)₂PhCO₂⁻ moieties, and THF molecules at axial position are omitted for clarity.

Fig. S4 (continued). Energy diagrams of frontier orbitals associated with π^* and δ^* orbitals for **2,5-(OH)**₂ (unit 1) (e) and **2,5-(OH)**₂ (unit 2) (g) obtained by DFT calculation for the structural models with (left) or without (right) intra-molecular hydrogen bond; a part of structural model of **2,5-(OH)**₂ (unit 1) (f) and **2,5-(OH)**₂ (unit 2) (g) subjected to DFT calculation; actual (left) or hypothetical (right) crystal structure with or without intra-molecular hydrogen bond, respectively. Attached digits indicate the value of Mulliken charge. Another bridging (OH)_xPhCO₂⁻ and 2,6-(CF₃)₂PhCO₂⁻ moieties, and THF molecules at axial position are omitted for clarity.

Fig. S4 (continued). Energy diagrams of frontier orbitals associated with π^* and δ^* orbitals for 2,6-(OH)₂ (i) obtained by DFT calculation for the structural models with (left) or without (right) intramolecular hydrogen bond; a part of structural model of 2,6-(OH)₂ subjected to DFT calculation; actual (left) or hypothetical (right) crystal structure with or without intra-molecular hydrogen bond, respectively. Attached digits indicate the value of Mulliken charge. Another bridging (OH)_xPhCO₂⁻ and 2,6-(CF₃)₂PhCO₂⁻ moieties, and THF molecules at axial position are omitted for clarity.

Fig. S4 (continued). A part of structural model of *m*-OH (k), *p*-OH (l), and **3,4-(OH)**₂ (m) subjected to DFT calculation. Attached digits indicate the value of Mulliken charge. Another bridging $OH_xPhCO_2^-$ and 2,6-(CF₃)₂PhCO₂⁻ moieties, and THF molecules at axial position are omitted for clarity.

Table S5. Difference of Mulliken charge on hydroxy-substituted benzoate between the model with or without intra-molecular hydrogen bond, where negative value indicates that the actual model with intra-molecular hydrogen bond is more negatively charged.

 $\begin{array}{c} & C14 \\ C13 & C15 \\ \parallel & -- & -06 \\ C12 & C16 \\ 05 & C11 \\ & & \\ 03 & & C10 \\ 03 & & & O4 \end{array}$

	<i>o</i> -OH	2,3-(OH) ₂	2,4-(OH) ₂	2,5-(OH) ₂	2,5-(OH) ₂	2,6-(OH)2
				Unit 1	Unit 2	
C10	-0.157	-0.138	-0.218	-0.196	-0.074	-0.244
C11	-0.167	-0.114	-0.014	-0.164	-0.125	-0.149
C12	-0.206	-0.619	-0.275	-0.183	-0.226	-0.221
C13	0.505	0.511	0.417	0.459	0.503	0.444
C14	0.067	0.342	0.079	0.087	0.073	0.131
C15	-0.009	0.034	0.019	-0.008	-0.012	0.472
C16	0.04	0.087	0.021	0.02	-0.004	-0.329
O3	-0.312	-0.316	-0.296	-0.294	-0.326	-0.312
O4	0.006	0.005	0.005	0.011	0.002	-0.291
O5	0.019	-0.014	0.077	0.033	0.018	0.027
O6		0.039	0.006	0.001	0.001	0.08
Н5	0.038	0.021	0.012	0.04	0.047	0.042
H6		0.012	-0.023	0.026	0.026	0.026
H13	0.026		-0.001	0.002	0.002	0.003
H14	0.001	0.024		-0.001	-0.001	0.026
H15	0.000	0.001	-0.001			0.026
H16	-0.003	-0.004	-0.003	-0.004	-0.004	
Total	-0 152	-0.129	-0.195	-0.171	-0.100	-0.269