Electronic Supplementary Information (ESI)

$Cs_3CuAs_4Q_8$ (Q = S, Se): unique two-dimensional layered inorganic thioarsenates with the lowest Cu-to-As ratio and remarkable photocurrent responses

Chang Liu,^a He-Di Yang,^{b,c} Pei-Pei Hou,^d Yu Xiao,^d Yi Liu^{*,d} and Hua Lin,^{*,b,e}

^aSchool of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
^c College of Chemistry, Fuzhou University, Fujian 350002, China
^dInstitute for Composites Science Innovation (InCSI), School of Materials Science and

Engineering, Zhejiang University, Hangzhou 310027, China

^eFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

*E-mail: liuyimse@zju.edu.cn and linhua@fjirsm.ac.cn.

Electronic Supplementary Information Index

Figures and Tables

Figure S1. SEM image and energy-dispersive X-ray spectroscopy analysis of (a) Cs₃CuAs₄S₈ and (b) Cs₃CuAs₄Se₈.

Figure S2. The experimental and simulated powder XRD of of (a) $Cs_3CuAs_4S_8$ and (b) $Cs_3CuAs_4Se_8$.

Figure S3. 3D structure of VCu₁₃As₃S₁₆ along the *c* direction.

Figure S4. 3D structure of KCu_4AsS_4 along the *b* direction.

Figure S5. 3D structure of $RbCu_4AsS_4$ along the *b* direction.

Figure S6. (a) 2D layered structure of KCu_2AsS_3 along the *a* direction. (b)

 $[Cu_2AsS_3]^-$ layer in the structure.

Figure S7. (a) 2D layered structure of $RbCu_2AsS_3$ along the *b* direction. (b) $[Cu_2AsS_3]^-$

layer in the structure.

Figure S8. (a) 2D layered structure of $CsCu_2AsS_3$ viewed from *b* direction. (b) $[Cu_2AsS_3]^-$ layer along the *ab* plane.

Figure S9. 3D structure of $Hg_3Cu_6As_4S_{12}$ along the *c* direction.

Figure S10. 3D structure of PbCuAsS₃ along the *c* direction.

Figure S11. 3D structure of PtCuAsS₃ along the *a* direction.

Figure S12. (a) 2D layered structure of $Rb_8Cu_6As_8S_{19}$ along the *b* direction. (b)

 $[Cu_6As_8S_{19}]^{8-}$ layer in the *ab* plane.

Table S1. Selected bond lengths (Å) for $Cs_3CuAs_4Q_8$ (Q = S, Se).

Table S2. Selected Bond Angles (deg) for $Cs_3CuAs_4Q_8$ (Q = S, Se).

Table S3. Structural features of selected quaternary X/Cu/As/Q (X = inorganic cations; Q = chalcogen) system.

4. References

Figures and Tables

Figure S1. SEM image and energy-dispersive X-ray spectroscopy analysis of (a)

Cs₃CuAs₄S₈ and (b) Cs₃CuAs₄Se₈.

Figure S2. The experimental and simulated powder XRD of of (a) Cs₃CuAs₄S₈ and (b)

 $Cs_3CuAs_4Se_8.$

Figure S3. 3D structure of VCu₁₃As₃S₁₆ along the *c* direction.

Figure S4. 3D structure of KCu_4AsS_4 along the *b* direction.

Figure S5. 3D structure of $RbCu_4AsS_4$ along the *b* direction.

Figure S6. (a) 2D layered structure of KCu_2AsS_3 along the *a* direction. (b)

 $[Cu_2AsS_3]^-$ layer in the structure.

Figure S7. (a) 2D layered structure of $RbCu_2AsS_3$ along the *b* direction. (b) $[Cu_2AsS_3]^-$

layer in the structure.

Figure S8. (a) 2D layered structure of $CsCu_2AsS_3$ viewed from *b* direction. (b) $[Cu_2AsS_3]^-$ layer along the *ab* plane.

Figure S9. 3D structure of $Hg_3Cu_6As_4S_{12}$ along the *c* direction.

Figure S10. 3D structure of PbCuAsS₃ along the c direction.

Figure S11. 3D structure of PtCuAsS₃ along the *a* direction.

Figure S12. (a) 2D layered structure of $Rb_8Cu_6As_8S_{19}$ along the *b* direction. (b) [$Cu_6As_8S_{19}$]⁸⁻ layer in the *ab* plane.

$Cs_3CuAs_4S_8$		Cs ₃ CuAs ₄ Se ₈			
Cu(1)-As(4)	2.6628(18)	Cu(1)-As(4)	2.615(2)		
Cu(1)-S(4)	2.328(3)	Cu(1)-Se(4)	2.4414(15)		
Cu(1)-S(5)	2.288(3)	Cu(1)-Se(5)	2.3908(16)		
Cu(1)-S(8)	2.298(3)	Cu(1)-Se(8)	2.4136(14)		
As(1)-S(2)	2.154(3)	As(1)-Se(2)	2.3039(15)		
As(1)-S(3)	2.311(3)	As(1)-Se(3)	2.434(2)		
As(1)-S(7)	2.313(3)	As(1)-Se(7)	2.4487(15)		
As(2)-S(3)	2.252(3)	As(2)-Se(3)	2.3861(14)		
As(2)-S(4)	2.189(3)	As(2)-Se(4)	2.3394(18)		
As(2)-S(6)	2.289(3)	As(2)-Se(6)	2.4215(13)		
As(3)-S(1)	2.299(3)	As(3)-Se(1)	2.4273(18)		
As(3)-S(7)	2.264(3)	As(3)-Se(7)	2.4110(13)		
As(3)-S(8)	2.201(3)	As(3)-Se(8)	2.3537(13)		
As(4)-S(1)	2.280(3)	As(4)-Se(1)	2.4148(13)		
As(4)-S(5)	2.179(3)	As(4)-Se(5)	2.3322(14)		
As(4)-S(6)	2.318(3)	As(4)-Se(6)	2.4454(15)		
Cs(1)-S(2)	3.513(3)	Cs(1)-Se(2)	3.6485(13)		
Cs(1)-S(5)	3.849(3)	Cs(1)-Se(7)	4.3085(13)		
Cs(1)-S(6)	3.924(3)	Cs(1)-Se(6)	3.9442(18)		
Cs(2)-S(1)	3.688(3)	Cs(2)-Se(1)	3.7381(16)		
Cs(2)-S(1)	3.690(3)	Cs(2)-Se(1)	3.7595(15)		
Cs(2)-S(1)	4.079(3)	Cs(2)-Se(1)	4.326(2)		
Cs(2)-S(2)	3.504(3)	Cs(2)-Se(2)	3.606(2)		
Cs(2)-S(2)	3.880(3)	Cs(2)-Se(2)	3.9250(15)		
Cs(2)-S(5)	4.159(3)	Cs(2)-Se(5)	4.328(2)		

Table S1. Selected bond lengths (Å) for $Cs_3CuAs_4Q_8$ (Q = S, Se).

Cs(2)-S(6)	3.636(3)	Cs(2)-Se(6)	3.7384(12)
Cs(2)-S(7)	3.711(3)	Cs(2)-Se(7)	3.9400(14)
Cs(2)-S(7)	3.896(3)	Cs(2)-Se(7)	3.935(2)
Cs(2)-S(8)	3.617(3)	Cs(2)-Se(8)	3.6504(18)
Cs(3)-S(2)	3.477(4)	Cs(3)-Se(2)	3.6005(19)
Cs(3)-S(3)	4.075(3)	Cs(3)-Se(3)	3.7215(12)
Cs(3)-S(3)	3.631(3)	Cs(3)-Se(3)	4.1309(15)
Cs(3)-S(4)	3.885(3)	Cs(3)-Se(4)	3.7162(13)
Cs(3)-S(4)	3.537(3)	Cs(3)-Se(4)	3.9687(16)
Cs(3)-S(8)	3.547(3)	Cs(3)-Se(8)	3.5847(12)
Cs(3)-S(8)	3.506(2)	Cs(3)-Se(8)	3.6184(19)
Cs(3)-S(7)	4.148(3)	Cs(3)-Se(7)	4.341(2)
Cs(4)-S(4)	3.527(3)	Cs(4)-Se(4)	3.6124(11)
Cs(4)-S(5)	3.524(3)	Cs(4)-Se(5)	3.6488(13)
Cs(4)-S(6)	3.583(3)	Cs(4)-Se(6)	3.6866(17)
Cs(4)-S(8)	3.688(3)	Cs(4)-Se(8)	3.8163(11)

Cs ₃ CuAs ₄ S ₈		Cs ₃ CuAs ₄ S	Cs ₃ CuAs ₄ Se ₈		
S(1)-As(4)-S(6)	93.11(11)	Se(1)-As(4)-Se(6)	93.01(5)		
S(2)-As(1)-S(3)	99.16(12)	Se(2)-As(1)-Se(3)	98.73(6)		
S(2)-As(1)-S(7)	102.99(11)	Se(2)-As(1)-Se(7)	103.37(5)		
S(3)-As(1)-S(7)	98.92(12)	Se(3)-As(1)-Se(7)	98.80(6)		
S(3)-As(2)-S(6)	98.27(11)	Se(3)-As(2)-Se(6)	97.46(5)		
S(4)-As(2)-S(3)	100.14(11)	Se(4)-As(2)-Se(3)	99.45(5)		
S(4)-As(2)-S(6)	106.14(11)	Se(4)-As(2)-Se(6)	107.82(6)		
S(5)-As(4)-S(1)	104.32(11)	Se(5)-As(4)-Se(1)	103.78(5)		
S(5)-As(4)-S(6)	102.93(10)	Se(5)-As(4)-Se(6)	102.46(6)		
S(7)-As(3)-S(1)	96.36(11)	Se(7)-As(3)-Se(1)	96.31(6)		
S(8)-As(3)-S(1)	101.75(10)	Se(8)-As(3)-Se(1)	101.29(5)		
S(8)-As(3)-S(7)	100.64(11)	Se(8)-As(3)-Se(7)	101.24(5)		
S(1)-As(4)-Cu(1)	100.25(8)	Se(1)-As(4)-Cu(1)	100.97(5)		
S(5)-As(4)-Cu(1)	124.94(9)	Se(5)-As(4)-Cu(1)	125.30(5)		
S(6)-As(4)-Cu(1)	124.12(9)	Se(6)-As(4)-Cu(1)	124.07(6)		
S(5)-Cu(1)-S(4)	115.04(11)	Se(5)-Cu(1)-Se(4)	116.95(6)		
S(5)-Cu(1)-S(8)	121.42(11)	Se(5)-Cu(1)-Se(8)	116.81(6)		
S(8)-Cu(1)-S(4)	115.36(11)	Se(8)-Cu(1)-Se(4)	115.45(5)		
S(4)-Cu(1)-As(4)	89.66(9)	Se(4)-Cu(1)-As(4)	88.69(6)		
S(5)-Cu(1)-As(4)	119.66(8)	Se(5)-Cu(1)-As(4)	122.28(6)		
S(8)-Cu(1)-As(4)	88.31(9)	Se(8)-Cu(1)-As(4)	91.15(6)		

Table S2. Selected Bond Angles (deg) for $Cs_3CuAs_4Q_8$ (Q = S, Se).

Table S3. Structural features of selected quaternary X/Cu/As/Q (X = inorganiccations; Q = chalcogen) system.

Compounds	Cu/As ratio	Crystal system	Space group	Structural	Def
				dimension	Kel.
VCu ₁₃ As ₃ S ₁₆	4.33	Cubic	$P^{\overline{4}}3n$	3D	1
KCu ₄ AsS ₄	4.0	Monoclinic	<i>P</i> 2 ₁	3D	2
$RbCu_4AsS_4$	4.0	Monoclinic	<i>P</i> 2 ₁	3D	2
KCu ₂ AsS ₃	2.0	Triclinic	$P\overline{1}$	2D	2
RbCu ₂ AsS ₃	2.0	Monoclinic	$P2_1/c$	2D	2
CsCu ₂ AsS ₃	2.0	Orthorhombic	Pbca	2D	3
$Hg_3Cu_6As_4S_{12}\\$	1.5	Trigonal	R3	3D	4
PbCuAsS ₃	1.0	Orthorhombic	$Pmn2_1$	3D	5
PtCuAsS ₃	1.0	Monoclinic	Сс	3D	6
$Rb_8Cu_6As_8S_{19}$	0.75	Monoclinic	$P2_1$	2D	7
Cs ₃ CuAs ₄ S ₈	0.25	Monoclinic	$P2_{1}/c$ (14)	2D	This work
Cs3CuAs4Se8	0.25	Monoclinic	<i>P</i> 2 ₁ / <i>c</i> (14)	2D	This work

4. References

- (1) O. Paolo, M. Stefano, D. Giuseppe and V. Giovanna, *Can. Mineral.*, 1981, **19**, 423–427.
- (2) H. G. Yao, M. Ji, S. H. Ji and Y. L. An, J. Solid State Chem., 2013, 198, 289-294.
- (3) H. G. Yao, C. F. Tang, Y. L. An, Z. J. Ou, G. H. Wu, P. Lan and Y. L. Zheng, J. Solid State Chem., 2017, 246, 87–91.
- (4) J. E. Jerome, P. T. Wood, W. T. Pennington and J. W. Kolis, *Inorg. Chem.*, 1994,
 33, 1733–1734.
- (5) V. I. Vasil'ev, N. V. Pervukhina, S. V. Borisov, S. A. Magarill, D. Y. Naumov and N. V. Kurat'eva, *Zapiski Vses. Miner. Obshch.*, 2009, **138**, 75–82.
- (6) K. S. Ding, C. H. He and Q. T. Zheng, *Kexue Tongbao (Foreign Language Edition)*, 1982, **27**, 62–66.
- (7) Y. Takeuchi and N. Haga, Z. Krist. Cryst. Mater., 1969, 130, 254-260.