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Synthesis 

The synthesis of CsLn(hfbc)4 (Ln = Yb, Tm, Er) complexes followed the literature procedure by Zinna et al.[S1] The 

series of [TMG-H+]3Ln(BINOLate)3 (Ln = Yb, Tm, Er) complexes followed a modified procedure by Walsh and co-

workers.[S2] The synthesis of [TMG-H+]3Ln(BINOLate)3 is described below. The reagents and solvents were used 

as received from the supplier. The 1H NMR spectra were recorded in deuterated CDCl3 using an Agilent Inova 

600 (1H: 600 MHz). Elemental analysis of CHN were performed with a vario MICRO cube CHNOS Elemental 

Analyzer GmbH. [TMG-H+]3Yb(BINOLate)3 has been fully characterised previously by Walsh and co-workers.[S2] 

General Procedure: [TMG-H+]3Ln(BINOLate)3 (Ln; Ln = Yb, Tm, Er). 

[TMG-H+]3Yb(BINOLate)3: Under ambient atmosphere, a 20 mL glass vial was charged with ytterbium(III) 

trifluoromethanesulfonate (111.18 mg, 0.18 mmol, 1 equiv; FW: 620.25 g·mol-1), CH3CN (1 mL), glacial acetic 

acid (31 µL, 0.54 mmol, 3 equiv; FW: 60.05 g·mol-1), and a Teflon-coated stir bar. The solution was stirred for 5 

min and a solution of (R)-BINOL (154.32 mg, 0.54 mmol, 3 equiv; FW: 286.32 g·mol-1) and TMG (135 µL, 1.08 

mmol, 6 equiv; FW: 115.18 g·mol-1) in CH3CN (1 mL) was added dropwise over 1 min. TMG (68 µL, 0.54 mmol, 3 

equiv; FW: 115.18 g·mol-1) was added dropwise, and immediately formed an off-white precipitate. After ~1 min 

of additional stirring, the vial was sealed and centrifuged at 6000 RPM for 5 min. The supernatant was decanted 

and the precipitate was dried under reduced pressure on a rotary evaporator. The product was crystallized by 

layering a concentrated solution of CH2Cl2 with petroleum ether. After 12-24 h the crystalline solid was isolated 

by vacuum filtration. Yield: 150.68 mg (0.11 mmol, 61 %; FW: 1374.54 g mol-1). NMR and analytical data are in 

agreement with those reported in the literature. [S2] 1H-NMR (600 MHz, CDCl3) δ: 10.58 (s, 1H, H-4), 8.70 (s, 1H, 

H-7), 8.35 (s, 1H, H-5), 7.80 (s, 1H, H-6), 5.51 (s, 1H, H-8), 4.17 (s, 6H, CH3), −14.32 (s, 1H, H-3). 13C-NMR (151 

MHz, CDCl3) δ: 169.52, 166.62, 155.72, 144.78, 143.29, 134.62, 130.07, 129.28, 128.46, 128.25, 128.07, 125.18, 

124.89, 124.64, 120.96, 40.78. 

[TMG-H+]3Tm(BINOLate)3: The title compound was prepared by General Procedure using thulium(III) 

trifluoromethanesulfonate (111.90 mg, 0.18 mmol, 1 equiv; FW: 616.14 g·mol-1). Yield: 166.25 g (0.12 mmol, 

67%; FW: 1370.43 g mol-1). 1H-NMR (600 MHz, CDCl3) δ: 21.77 (s, 1H), 13.80 (s, 1H), 11.52 (s, 1H), 10.96 (s, 1H), 

9.50 (s, 6H), 1.34 (s, 1H), 0.35 (s, 1H). 13C-NMR (151 MHz, CDCl3) δ: 197.00, 164.86, 140.10, 139.34, 133.12, 

131.99, 127.04, 121.35, 115.96, 47.98. Anal. Calcd for C75H78O6N9Tm·3H2O·0.5C6H14: C, 63.84; H, 6.25; N, 8.59. 

Found: C, 63.55; H, 6.35; N, 8.50. 
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[TMG-H+]3Er(BINOLate)3: The title compound was prepared by General Procedure using erbium(III) 

trifluoromethanesulfonate (117.52 mg, 0.19 mmol, 1 equiv; FW: 614.47 g·mol-1). Yield: 212.15 g (0.15 mmol, 81 

%; FW: 1368.76 g mol-1). 1H-NMR (600 MHz, CDCl3) δ: 25.26 (s, 1H), 15.03 (s, 1H), 12.40 (s, 1H), 11.14 (s, 1H), 

9.52 (s, 6H), 1.30 (s, 1H), -1.43 (s, 1H). 13C-NMR (151 MHz, CDCl3) δ: 173.06, 141.90, 141.03, 139.49, 135.20, 

134.60, 127.70, 126.93, 121.30, 108.04, 47.81, 22.76. Anal. Calcd for C75H78O6N9Er·3.5H2O·0.5C6H14: C, 63.13; H, 

6.31; N, 8.50. Found: C, 63.06; H, 6.37; N, 8.32. 

NMR analysis 

 

Table S1. Observed proton shift (δobs) and paramagnetic contribution (δpar = δobs – 

δdiam), longitudinal relaxation time (T1) and relaxation rate (ρ) of the specific nucleus 

for [TMG-H+]3Yb(BINOLate)3. As well as geometrical factors (GF) and distances 

between Yb and the observed nucleus (rYb-X) calculated from the crystal structures 

obtained by Walsh et al.[S2] 

H δobs / ppm δpara / ppm T1 / ms ρ (× 103) / s-1 GF (× 103) / Å-3 a rYb-X / Å a 

3 -14.30 -21.30 12 83.3 -14.9 4.1 

4 10.61 3.61 101 9.9 -1.36 5.9 

5 8.37 1.37 364 2.7 1.10 7.5 

6 7.83 0.83 609 1.6 1.33 8.7 

7 8.73 1.73 471 2.1 1.84 8.1 

8 5.53 -1.47 113 8.8 3.97 6.2 

a) Calculated from the crystal structure reported in ref [S2]

The observed shift (δobs) is made up of both a paramagnetic (δpara) and diamagnetic contribution (δdia). Thus 

subtraction of the diamagnetic component using a suitable reference ([TMG-H+]3La(BINOLate)3) yields the 

paramagnetic shift. The term δpar is also made of two contributions, namely the Fermi contact (δFC) and 

pseudocontact (δPC) terms.[S3] The pseudocontact term can be written as Equation S3 (axially symmetric 

complex), which shows proportionality to a geometrical factor term. The axial magnetic susceptibility anisotropy 

factor is denoted as D. The distance between the observed nucleus and the paramagnetic centre (Yb) is denoted 

as r, and Ω is its azimuthal angle with respect to the Cn axis.[S3]  

 𝛿𝑜𝑏𝑠 = 𝛿𝑝𝑎𝑟𝑎 + 𝛿𝑑𝑖𝑎 Eq. S1 

 𝛿𝑝𝑎𝑟𝑎 = 𝛿𝐹𝐶 + 𝛿𝑃𝐶  Eq. S2 

 
𝛿𝑃𝐶 = D  

(3 cos2 Ω − 1)

𝑟3
= D  (𝐺𝐹) 

Eq. S3 
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As δPC is usually much smaller than δFC for nuclei more than 3/4 bonds apart from the paramagnetic centre, here 

we assumed: 

𝛿𝑝𝑎𝑟𝑎 ≈ 𝛿𝑃𝐶  
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Figure S1. Left: The longitudinal relaxation rate (ρ1) from the 1H NMR of [TMG-H+]3Yb(BINOLate)3 against r-6 

calculated from the crystal structure of [TMG-H+]3La(BINOLate)3. Right: The relation between δPC of [TMG-

H+]3Yb(BINOLate)3 and the geometrical factor (GF) calculated from the crystal structure of [TMG-

H+]3La(BINOLate)3. 

Instrumentation 

NIR-CD/NIR-Abs measurements 

NIR-CD measurements were performed using a Jasco J200 spectropolarimeter provided with an ADC system. 

Concentrations of solutions varied between 4-17 mM in either DCM or CDCl3. All complexes were measured in 

1 cm optical glass cells with parameters as follows: Scan speed 50 nm/min, slit width 2-4 nm, integration time 

1-4 sec, accumulations 4. The spectra were baseline corrected by subtraction of the solvent spectrum. Solutions 

of the same concentrations were used to measure the corresponding NIR absorption spectra using a Cary 5000 

UV-Vis-NIR spectrophotometer. 

NIR-CPL measurements 

NIR-CPL spectra were recorded used the home-built spectrofluoropolarimeter, equipped with a Hamamatsu 

R316 Ag-O-Cs photomultiplier tube, as described in ref [S4]. The spectra were collected under 365 nm irradiation 

from a commercial LED-source, using a 90° geometry between the excitation and detection direction. All the 

NIR-CPL spectra were recorded on 1 mM CH2Cl2 solutions in 1 cm semi-micro (aperture 4 mm) optical glass cells 

using the following parameters: scan-speed 0.5 nm/sec, integration time 2 sec, photomultiplier tube driving 

voltage 1100 V, accumulations 5-8. 
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UV-ECD measurements 

UV-ECD spectra were recorded using a Jasco J710 spectropolarimeter on 1 mM CH2Cl2 solutions of CsLn(hfbc)4 

and 0.13 mM CH2Cl2 solutions of [TMG-H+]3Ln(BINOLate)3 (Ln = Yb, Tm, Er) in 0.02 cm optical glass cells. The 

same solutions were used to record the corresponding UV absorption spectra. 

Additional spectra 
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Figure S2. The glum factor as a function of wavelength for the enantiomers of CsYb(hfbc)4 (Left) and [TMG-

H+]3Yb(BINOLate)3 (Right) 
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Figure S3. The total absorption spectrum of [TMG-H+]3La(BINOLate)3. Recorded in 10 mM solutions at room 

temperature. 
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Figure S4. ECD and average absorption spectra traced in the background of the enantiomers of [TMG-

H+]3Ln(BINOLate)3. Recorded in 0.13 mM solutions of DCM at room temperature. 
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Figure S5. ECD and average absorption spectra traced in the background of the enantiomers of CsLn(hfbc)4. 

Recorded in 1 mM solutions of DCM at room temperature. 

 

Figure S6. 1H-NMR (600 MHz, CDCl3) spectra of [TMG-H+]3Yb(BINOLate)3. 
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Figure S7. 13C-NMR (151 MHz, CDCl3) spectra of [TMG-H+]3Yb(BINOLate)3. 

 

Figure S8. 1H-NMR (600 MHz, CDCl3) spectra of [TMG-H+]3Tm(BINOLate)3. 
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Figure S9. 13C-NMR (151 MHz, CDCl3) spectra of [TMG-H+]3Tm(BINOLate)3. 

 

Figure S10. 1H-NMR (600 MHz, CDCl3) spectra of [TMG-H+]3Er(BINOLate)3. 
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Figure S11. 13C-NMR (151 MHz, CDCl3) spectra of [TMG-H+]3Er(BINOLate)3. 
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