Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Bimetallic Complexes with Xanthene-4,5-diNHC Ligands

Alexander Kaps, Sabine Foro and Herbert Plenio*

Organometallic Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany

Table of contents

1.	NMR spectra	1
	2,3,6,7,9,9-Hexamethylxanthene (2)	1
	4,5-Dibromo-2,3,6,7,9,9-hexamethylxanthene (3)	2
	2,3,6,7,9,9-hexamethylxanthene-4,5-dicarboxylic acid (4)	3
	Dibenzyl(2,3,6,7,9,9-hexamethylxanthene-4,5-diyl)dicarbamate (5)	4
	4,5-Diamino-2,3,6,7,9,9-hexamethylxanthene (6)	5
	4-Amino-2,3,6,7,9,9-hexamethylxanthene (7)	6
	Xanthene diimine (8)	7
	Xanthene imidazolium salt (9 · 2 HCl)	8
	Xanthene imidazolium salt (9 · 2 HBF ₄)	LO
	[(IrCl(cod)) ₂ (9)]	11
	[(IrCl(cod)) ₂ (9)] + AgOTf - experiment	L3
	[(IrCl(CO) ₂) ₂ (9)]	16
	[(RhCl(CO) ₂) ₂ (9)]1	L7
	[(AuCl) ₂ (9)]	18
	Xanthene diimine (10)	٤9
	Xanthene imidazolium salt ($f 11\cdot HCI$)	20
	[(AuCl)(11)]	21
	[(IrCl(cod))(11)]	22
	[(IrCl(CO) ₂)(11)]	23
	Xanthene tetraamide (12)	24
	Xanthene tetramine (13)	25
	Imidazolinium salt (14 \cdot 2 HCl)	26
	[(IrCl(cod)) ₂ (14)]	28

	[(IrCl(CO) ₂) ₂ (14)]	29
	[AuCl) ₂ (14)]	30
	1,1'-(2,3,6,7,9,9-hexamethyl-9H-xanthene-4,5-diyl)bis(1H-imidazole) (15)	31
	Xanthene imidazolium salt ($16 \cdot 2 HBr$)	32
	Xanthene imidazolium salt ($16 \cdot 2 HBF_4$)	33
	[(AgBr) ₂ (16)]	34
	[(AuCl) ₂ (16)]	35
	[(Au(AuCl) ₂)(Cl)(16) ₂]	36
	[(Cul) ₂ (16)]	37
	[(RhCl(cod)) ₂ (16)]	38
	[(RhBr(cod)) ₂ (16)]	39
	[(IrBr(cod)) ₂ (16)]	40
	[(RhCl(CO) ₂) ₂ (16)]	41
	[(IrBr(CO) ₂) ₂ (16)]	42
	[(PdCl(allyl)) ₂ (16)]	43
2.	Mass spectrometry	. 44
3.	IR spectroscopy	. 74
4.	Cyclic voltammetry	. 76
5.	X-ray crystal structure	. 79
	[(IrCl(cod)) ₂ (9)]	79
	[AuCl) ₂ (14)]	81
	[(Au(AuCl) ₂)(Cl)(16) ₂]	83
	[(RhCl(cod)) ₂ (16)]	85

1. NMR spectra

Figure 1: ¹H NMR of 2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

Figure 2: ¹³C NMR of 2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

Figure 3: ¹H NMR of 4,5-dibromo-2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

2,3,6,7,9,9-hexamethylxanthene-4,5-dicarboxylic acid (4)

Figure 4: ¹H NMR of 2,3,6,7,9,9-hexamethylxanthene-4,5-dicarboxylic acid in DMSO-d₆.

Figure 5: ¹³C-NMR of 2,3,6,7,9,9-hexamethylxanthene-4,5-dicarboxylic acid in DMSO-d₆.

Dibenzyl(2,3,6,7,9,9-hexamethylxanthene-4,5-diyl)dicarbamate (5)

Figure 6: ¹H-NMR of dibenzyl(2,3,6,7,9,9-hexamethylxanthene-4,5-diyl)dicarbamate in CDCl₃.

Figure 7: ¹³C-NMR of dibenzyl(2,3,6,7,9,9-hexamethylxanthene-4,5-diyl)dicarbamate in CDCl₃.

Figure 8: ¹H-NMR of 4,5-diamino-2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

Figure 9: ¹³C-NMR of 4,5-diamino-2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

Figure 11: ¹³C-NMR of 4-amino-2,3,6,7,9,9-hexamethylxanthene in CDCl₃.

Xanthene diimine (8)

Figure 13: ¹³C-NMR of xanthene diimine (**8**) in CD₂Cl₂.

Xanthene imidazolium salt ($9 \cdot 2$ HCl)

5.5 5.0 f1 (ppm)

6.0

4.5

4.0

3.5

3.0

Figure 15: ¹H-NMR of $9 \cdot 2$ HCl in CDCl₃.

9.0

Ē

10.0 9.5

- 96.1

-00.4

8.0

8.5

₩ 00'±

7.5

7.0 6.5

11.98<u>4</u> 6.25 <u>4</u> 6.20 4

1.5

0.5

1.0

2.0

12.05H

2.5

Figure 16: ¹³C-NMR of **9** · 2 HCl in CDCl₃.

Xanthene imidazolium salt (9 · 2 HBF₄)

Figure 18: ¹³C-NMR of $9 \cdot 2$ HBF₄ in CD₂Cl₂.

[(IrCl(cod))₂(9)]

Figure 19: ¹H-NMR of [(IrCl(cod))₂(9)] in CDCl₃.

Figure 20: ¹³C-NMR of [(IrCl(cod))₂(**9**)] in CDCl₃.

Figure 22: ¹³C-NMR of [(IrCl(cod))₂(**9**)] in CD₂Cl₂.

[(IrCl(cod))₂(9)] + AgOTf - experiment

An NMR-Tube was charged with 5 mg [(IrCl(cod))₂(9)] and 1 mg (1 eq) AgOTf in CD₂Cl₂.

Figure 23: ¹H-NMR of $[(IrCl(cod))_2(9)]$ + AgOTf @24h in CD₂Cl₂. NMR sample was prepared from a pure substance according

Figure 24: ¹³C-NMR of $[(IrCl(cod))_2(9)]$ + AgOTf @24h in CD₂Cl₂. NMR sample was prepared from a pure substance according to TLC.

Figure 25: Stacked ¹H spectra of $[(IrCl(cod))_2(9)]$ (below), $[(IrCl(cod))_2(9)] + AgOTf @24h$ (above) in CD_2Cl_2 .

Figure 26: ¹H-NMR of $[(IrCl(cod))_2(IMes)]$ + AgOTf in CD₂Cl₂ NMR sample was prepared from a pure substance according to TLC.

Figure 27: Stacked ¹H spectra of $[(IrCl(cod))_2(IMes)]$ (below), $[(IrCl(cod))_2(IMes)] + AgOTf$ (above) in CD_2Cl_2 .

[(IrCl(CO)₂)₂(**9**)]

Figure 29: ¹³C-NMR of [(IrCl(CO)₂)₂(**9**)] in CDCl₃.

[(RhCl(CO)₂)₂(**9**)]

Figure 30: ¹H-NMR of **crude** [(RhCl(CO)₂)₂(**9**)] in CDCl₃.

[(AuCl)₂(9)]

Figure 32: ¹³C-NMR of [(AuCl)₂(**9**)] in CD₂Cl₂.

Xanthene diimine (10)

Figure 33: ¹*H*-*NMR of xanthene diimine* (**10**) *in CDCl*₃.

Figure 34: ¹³C-NMR of xanthene diimine (10) in CDCl₃.

Xanthene imidazolium salt ($\mathbf{11} \cdot \mathbf{HCI}$)

Figure 35: ¹H-NMR of **11** \cdot HCl in CDCl₃.

Figure 36: ¹³C-NMR of **11** · HCl in CDCl₃.

[(AuCl)(11)]

Figure 38: ¹³C-NMR of [(AuCl)(**11**)] in CDCl₃.

[(IrCl(cod))(**11**)]

Figure 39: ¹H-NMR of [(IrCl(cod))(**11**)] syn/anti in CDCl₃. Isomer mixture ratio approximately 70:30 (major/minor).

Figure 40: ¹³C-NMR of [(IrCl(cod))(**11**)] syn/anti in CDCl₃. Isomer mixture ratio approximately 70:30 (major/minor).

[(IrCl(CO)₂)(**11**)]

Figure 41: ¹H-NMR of [(IrCl(CO)₂)(**11**)] syn/anti in CDCl₃. Isomer mixture ratio approximately 50:50.

Figure 42: ¹³C-NMR of [(IrCl(CO)₂)(11)] syn/anti in CDCl₃. Isomer mixture ratio approximately 50:50.

Xanthene tetraamide (12)

¹⁷⁰ 160 150 140 130 120 110 100 90 80 f1 (ppm) Figure 44: ¹³C-NMR of xanthene tetraamide (**12**) in DMSO-d₆.

-1000

Xanthene tetramine (13)

Figure 45: ¹*H*-*NMR of xanthene tetramine (13) in CDCl*₃.

Figure 46: ¹³C-NMR of xanthene tetramine (13) in CDCl₃.

Imidazolinium salt (14 · 2 HCl)

Figure 47: ¹H-NMR of $14 \cdot 2$ HCl in CDCl₃.

Figure 48: ¹H-NMR of $14 \cdot 2$ HCl in MeOD.

Figure 49: ¹³C-NMR of xanthene **14** · 2 HCl in MeOD.

[(IrCl(cod))₂(14)]

Figure 50: ¹H-NMR of [(IrCl(cod))₂(14)] in CD_2Cl_2 . NMR sample was prepared from a pure substance according to TLC.

Figure 51: ¹H-NMR of [(IrCl(cod))₂(14)] in CD₂Cl₂. NMR sample was prepared from a pure substance according to TLC

[(IrCl(CO)₂)₂(14)]

Figure 52: ¹H-NMR of [(IrCl(CO)₂)₂(**14**)] in CD₂Cl₂.

Figure 53: ¹H-NMR of [(IrCl(CO)₂)₂(**14**)] in CD₂Cl₂.

[AuCl)₂(14)]

Figure 55: ${}^{13}C$ -NMR of [AuCl)₂(14)] in CD₂Cl₂.

1,1'-(2,3,6,7,9,9-hexamethyl-9H-xanthene-4,5-diyl)bis(1H-imidazole) (15)

Figure 56: ¹H-NMR of 1,1'-(2,3,6,7,9,9-hexamethyl-9H-xanthene-4,5-diyl)bis(1H-imidazole) (**15**) in CD_2Cl_2 .

Figure 57: ¹³C-NMR of 1,1'-(2,3,6,7,9,9-hexamethyl-9H-xanthene-4,5-diyl)bis(1H-imidazole) (15) in CD₂Cl₂

Xanthene imidazolium salt (16 · 2 HBr)

Figure 59: ¹³C-NMR of **16** \cdot 2 HBr in CD₂Cl₂.

Figure 61: ¹³C-NMR of $16 \cdot 2 \text{ HBF}_4$ in CD_2Cl_2 .

Figure 63: 13 C-NMR of [(AgBr)₂(**16**)] in CD₂Cl₂.
[(AuCl)₂(16)]

110 100 f1 (ppm)

Figure 65: ¹³C-NMR of [(AuCl)₂(**16**)] in CD₂Cl₂.

:00

[(Au(AuCl)₂)(Cl)(16)₂]

Figure 66: ¹H-NMR of [(Au(AuCl)₂)(Cl)(**16**)₂] in CD₂Cl₂.

Figure 67: ${}^{13}C$ -NMR of [(Au(AuCl)₂)(Cl)(**16**)₂] in CD₂Cl₂.

[(Cul)₂(16)]

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm) Figure 69: ¹³C-NMR of [(Cul)₂(**16**)] in CD₂Cl₂.

177.57

144.11

500

- 0

-500

[(RhCl(cod))₂(16)]

Figure 70: ¹H-NMR of [(RhCl(cod))₂(16)] in CD₂Cl₂.

Figure 71: ¹³C-NMR of [(RhCl(cod))₂(**16**)] in CD₂Cl₂.

[(RhBr(cod))₂(16)]

Figure 72: ¹H-NMR of [(RhBr(cod))₂(**16**)] in CD₂Cl₂.

Figure 73: ${}^{13}C$ -NMR of [(RhBr(cod))₂(**16**)] in CD₂Cl₂.

[(IrBr(cod))₂(**16**)]

Figure 74: ¹*H*-*NMR of* [(*IrBr*(*cod*))₂(**16**)] *in CD*₂*Cl*₂.

Figure 75: ${}^{13}C$ -NMR of [(IrBr(cod))₂(**16**)] in CD₂Cl₂.

[(RhCl(CO)₂)₂(16)]

Figure 76: ¹H-NMR of [(RhCl(CO)₂)₂(**16**)] in CD₂Cl₂.

Figure 77: ¹³C-NMR of [(RhCl(CO)₂)₂(**16**)] in CD₂Cl₂.

[(IrBr(CO)₂)₂(16)]

Figure 78: ¹H-NMR of [(IrBr(CO)₂)₂(**16**)] in CD₂Cl₂.

Figure 79: ¹³C-NMR of [(IrBr(CO)₂)₂(**16**)] in CD₂Cl₂.

[(PdCl(allyl))₂(**16**)]

Figure 81: ¹³C-NMR of [(PdCl(allyl))₂(**16**)] in CD₂Cl₂.

2. Mass spectrometry

Figure 82: HRMS (ESI, positive mode) of 2,3,6,7,9,9-hexamethylxanthene-4,5-dicarboxylic acid (4).

Figure 83: HRMS (ESI, positive mode) of dibenzyl (2,3,6,7,9,9-hexamethylxanthene-4,5-diyl)dicarbamate (5).

Figure 85: HRMS (ESI, positive mode) of xanthen imidazolium chloride (9).

Figure 86: HRMS (ESI, positive mode) of [(IrCl(cod))₂(**9**)].

Figure 89: HRMS (APCI, positive mode) of [(AuCl)₂(**9**)].

Figure 90: HRMS (ESI, positive mode) of xanthene diimine (10).

Figure 91: HRMS (ESI, positive mode) of xanthen imidazolium chloride (11 · HCl).

Figure 92: HRMS (ESI, positive mode) of [AuCl(11)]-complex.

Figure 94: HRMS (ESI, positive mode) of [IrCl(CO)₂(**11**)].

Figure 96: HRMS (APCI, positive mode) of xanthene tetramine (13).

Accurate Mass Measurement											
	#	Meas. m/z	Ion Formula	m/z	Sum Formula	err [mDa]	err [ppm]	e ⁻ Conf	Adduct	z	
	1	320.20657	C43H52N4O	320.20651	C43H52N4O	0.06	-0.18	even	M	2+	
	1	675.38155	C27H52CIN12O6	675.38158	C27H52CIN12O6	0.03	0.04	even	M	1+	
	2	320.20657	C45H54NO2	320.20718	C45H54NO2	0.61	1.92	odd	M	2+	
	2	675.38155	C42H56CIO5	675.38108	C42H56CIO5	0.47	-0.70	even	M	1+	
	3	675.38155	C43H52CIN4O	675.38242	C43H52CIN4O	0.86	1.28	even	M	1+	

Figure 97: HRMS (ESI, positive mode) of xanthene imidazolinium salt (14 · 2 HCl).

Figure 99: HRMS (ESI, positive mode) of $[(IrCl(cod))_2(14)]$.

Accurate Mass Measurement

#	Meas. m/z	Ion Formula	m/z	Sum Formula	err [mDa]	err [ppm]	e ⁻ Conf	Adduct	z
1	1171.26929	C43H175CIIr2N3O	1171.26767	C43H175CIIr2N3O	2.51	-2.14	even	М	1+
1	1212.29595	C47H180CIIr2NO2	1212.29557	C47H180CIIr2NO2	1.18	-0.97	odd	M	1+
2	1171.26929	C45H177CIIr2O2	1171.26902	C45H177CIIr2O2	1.11	-0.95	odd	M	1+
2	1212.29595	C47H51CIIr2N8O4	1212.29748	C47H51CIIr2N8O4	0.68	0.56	odd	M	1+
3	1171.26929	C41H173CIIr2N6	1171.26633	C41H173Cllr2N6	3.91	-3.34	odd	M	1+
3	1212.29595	C45H178CIIr2N4O	1212.29422	C45H178CIIr2N4O	2.58	-2.13	even	M	1+
4	1171.26929	C44H52CIIr2N3O8	1171.26960	C44H52CIIr2N3O8	0.58	-0.49	odd	M	1+
4	1212.29595	C48H57CIIr2NO9	1212.29749	C48H57CIIr2NO9	0.75	0.62	even	M	1+
5	1171.26929	C45H48CIIr2N7O4	1171.27093	C45H48CIIr2N7O4	0.75	0.64	odd	M	1+
5	1212.29595	C49H53CIIr2N5O5	1212.29883	C49H53CIIr2N5O5	2.08	1.72	even	M	1+
6	1171.26929	C42H50Cllr2N6O7	1171.26825	C42H50CIIr2N6O7	1.97	-1.69	even	M	1+
6	1212.29595	C46H55CIIr2N4O8	1212.29615	C46H55CIIr2N4O8	0.65	-0.53	odd	M	1+
7	1171.26929	C46H54CIIr2O9	1171.27094	C46H54CIIr2O9	0.82	0.70	even	M	1+
7	1212.29595	C44H53CIIr2N7O7	1212.29480	C44H53CIIr2N7O7	2.05	-1.69	even	M	1+
8	1171.26929	C47H50Cllr2N4O5	1171.27228	C47H50CIIr2N4O5	2.15	1.84	even	M	1+
8	1212.29595	C56H49CIIr2N5	1212.29295	C56H49CIIr2N5	3.65	-3.01	even	M	1+
9	1171.26929	C39H52CIIr2N5O10	1171.26557	C39H52CIIr2N5O10	4.69	-4.01	odd	M	1+
9	1212.29595	C58H51CIIr2N2O	1212.29430	C58H51CIIr2N2O	2.24	-1.85	odd	M	1+
10	1171.26929	C36H179CIIr2N3O6	1171.27355	C36H179CIIr2N3O6	3.24	2.77	even	M	1+
10	1212.29595	C37H186CIIr2O10	1212.29876	C37H186CIIr2O10	1.84	1.52	even	M	1+

Figure 100: HRMS (ESI, positive mode) of [(IrCl(CO)₂)₂(14)].

Figure 101: HRMS (APCI, positive mode) of 1,1'-(2,3,6,7,9,9-hexamethyl-9H-xanthene-4,5-diyl)bis(1H-imidazole) (15).

Figure 102: HRMS (ESI, negative mode) of xanthene imidazolium salt (16 · 2 HBr).

#	Meas. m/z	Ion Formula	m/z	Sum Formula	err [mDa]	err [ppm]	e ⁻ Conf	Adduct
1	573.17802	C30H34AgN4O	573.17781	C30H34AgN4O	0.21	-0.37	even	M
1	653.10423	C30H35AgBrN4O	653.10397	C30H35AgBrN4O	0.26	-0.40	even	М
1	759.00121	C30H34Ag2BrN4O	759.00124	C30H34Ag2BrN4O	0.04	0.05	even	M

Figure 103: HRMS (APCI, positive mode) of [(AgBr)₂(16)].

Figure 104: HRMS (APCI, positive mode) of [(AuCl)₂(16)]

Figure 106: HRMS (APCI, positive mode) of [(RhCl(CO)₂)₂(16)].

	"	1110000.111/2	ionn onnaid		ounninonu		on [ppin]	0 00111	100000
	1	763.04174	C31H38CIO7Rh2	763.04107	C31H38CIO7Rh2	0.67	-0.88	even	M
	1	791.03658	C32H38CIO8Rh2	791.03598	C32H38CIO8Rh2	0.60	-0.75	even	M
	1	804.06842	C32H35CIN8O2Rh2	804.06761	C32H35CIN8O2Rh2	0.81	-1.01	odd	M
	1	819.03115	C32H32CIN7O4Rh2	819.03089	C32H32CIN7O4Rh2	0.26	-0.31	odd	M
	1	832.06302	C34H41CINO8Rh2	832.06253	C34H41CINO8Rh2	0.49	-0.59	even	M
	1	855.12372	C37H41N6O5Rh2	855.12430	C37H41N6O5Rh2	0.59	0.69	even	M
	2	763.04174	C32H34CIN4O3Rh2	763.04240	C32H34CIN4O3Rh2	0.66	0.87	even	M
	2	791.03658	C33H34CIN4O4Rh2	791.03732	C33H34CIN4O4Rh2	0.74	0.94	even	M
	2	804.06842	C33H41CINO7Rh2	804.06761	C33H41CINO7Rh2	0.81	-1.00	even	M
-	2	819.03115	C34H34CIN4O5Rh2	819.03223	C34H34CIN4O5Rh2	1.09	1.33	even	M
	2	832.06302	C35H37CIN5O4Rh2	832.06387	C35H37CIN5O4Rh2	0.85	1.02	even	M
	2	855.12372	C48H28N6O4Rh	855.12216	C48H28N6O4Rh	1.56	-1.82	even	M
	3	763.04174	C37H33O5Rh2	763.04326	C37H33O5Rh2	1.52	1.99	even	M
	3	791.03658	C38H33O6Rh2	791.03817	C38H33O6Rh2	1.60	2.02	even	M
	3	804.06842	C34H37CIN5O3Rh2	804.06895	C34H37CIN5O3Rh2	0.53	0.66	even	M
	3	819.03115	C33H28CIN11Rh2	819.03223	C33H28CIN11Rh2	1.08	1.32	odd	M
	3	832.06302	C40H36NO6Rh2	832.06472	C40H36NO6Rh2	1.70	2.04	even	M
	3	855.12372	C50H30N3O5Rh	855.12350	C50H30N3O5Rh	0.21	-0.25	odd	M
	4	763.04174	C33H29N6O3Rh2	763.04057	C33H29N6O3Rh2	1.17	-1.53	even	M
	4	791.03658	C34H29N6O4Rh2	791.03549	C34H29N6O4Rh2	1.09	-1.37	even	M
	4	832.06302	C36H32N7O4Rh2	832.06204	C36H32N7O4Rh2	0.98	-1.18	even	M
	4	855.12372	C52H32O6Rh	855.12484	C52H32O6Rh	1.13	1.32	even	M
	5	855,12372	C51H26N7OBh	855,12484	C51H26N7OBh	1.12	1.31	odd	м

Figure 109: HRMS (ESI, positive mode) of [(RhCl(CO)₂)₂(16)].

Figure 111: HRMS (ESI, positive mode) of [(PdCl(allyl))₂(16)].

3. IR spectroscopy

Figure 112: IR spectrum of [(IrCl(CO)₂)₂(9)]].

Figure 113: IR spectrum of [(IrCl(CO)₂)(**11**)].

Figure 114: IR spectrum of [(IrCl(CO)₂)(**14**)].

Figure 115: IR spectrum of [(*IrBr*(*CO*)₂]₂(**16**)].

Figure 116: IR spectrum of [(RhCl(CO)₂]₂(16)]].

4. Cyclic voltammetry

Figure 117: Cyclic voltammetry diagram of [(*IrCl(cod)*)₂(**9**)].

Figure 118: Cyclic voltammetry diagram of [(IrCl(cod))(11)].

Figure 119: Cyclic voltammetry diagram of [(IrCl(cod))(14)].

Figure 120: Cyclic voltammetry diagram of [(IrCl(cod))(16)].

Figure 121: Cyclic voltammetry diagram of [(IrBr(cod))(16)].

Figure 122: Cyclic voltammetry diagram of [(IrBr(cod))₂(16)].

5. X-ray crystal structure

Figure 123: Crystal structure of [(IrCl(cod))₂(**9**)] (thermal ellipsoids are shown at the 50% probability level).

%V Free	%V Buried	% V Tot/V Ex
67.2	32.8	99.9

Quadrant	Vf	Vb	V t	%V f	%V b
SW	29.0	15.8	44.9	64.7	35.3
NW	35.2	9.7	44.9	78.5	21.5
NE	24.6	20.3	44.9	54.8	45.2
SE	31.9	13.0	44.9	71.0	29.0

Steric Map

[AuCl)₂(14)]

Figure 124: Crystal structure of [AuCl)₂(14)] (thermal ellipsoids are shown at the 30% probability level).

%V Free	%V Buried	% V Tot/V Ex
61.9	38.1	99.9

Quadrant	V f	V b	V t	%V f	%V b
SW	23.8	21.1	44.9	53.0	47.0
NW	30.1	14.7	44.9	67.2	32.8
NE	24.6	20.3	44.9	54.8	45.2
SE	32.6	12.3	44.9	72.6	27.4

Steric Map

[(Au(AuCl)₂)(Cl)(**16**)₂]

Figure 125: Crystal structure of [(Au(AuCl)₂)(Cl)(**16**)₂] (thermal ellipsoids are shown at the 30% probability level).

%V Free	%V Buried	% V Tot/V Ex	
60.7	39.3	99.9	

Quadrant	V f	V b	V t	%V f	%V b
SW	35.3	9.5	44.9	78.7	21.3
NW	24.5	20.3	44.9	54.7	45.3
NE	23.4	21.4	44.9	52.2	47.8
SE	25.6	19.3	44.9	57.1	42.9

[(RhCl(cod))₂(**16**)]

Figure 126: Crystal structure of [(RhCl(cod))₂(**16**)] (thermal ellipsoids are shown at the 50% probability level).

%V Free	%V Buried	% V Tot/V Ex	
69.1	30.9	99.9	

Quadrant	V f	V b	V t	%V f	%V b	
SW	34.0	10.8	44.9	75.9	24.1	
NW	31.8	13.1	44.9	70.9	29.1	
NE	34.3	10.6	44.9	76.4	23.6	
SE	23.9	21.0	44.9	53.2	46.8	

Steric Map

