Supporting information

Facile Strategy for the Synthesis of Silver Nanoparticles on Magnetic

$Fe_3O_4@C$ Core-shell Nanocomposites and Their Application in Catalytic

Reduction

Xin Wang^a, Jing Zheng^a*, Peiyu Li^a, Xuebo Yin^a, Siyao Wang^a, Baishun Zhang^b*, Jingli Xu^a, Min Zhang^a*

^a College of Chemistry and Chemical Enginerring, Shanghai University of Engineering Science, Shanghai 201620, PR China. ^b Anhui Institute of Public Security Education, Hefei, Anhui 230088, PR China.

Fig.S1 SEM and TEM images of (A, B) MoO₃

Fig.S2 Nitrogen adsorption-desorption isotherms of Fe₃O₄@C-Ag(A,1:1,B,1:3). Inset: pore size distribution.

Fig. S3. Raman analysis curve of Fe₃O₄@C-Ag

Fig. S4. Cycle test of the representative $Fe_3O_4@C-Ag$.

Fig. S5. SEM image of the Fe₃O₄@C-Ag Cycle test of the representative.

Table S1. ICP data of $Fe_3O_4@C-Ag(1:1),(1:2)$ and (1:3).

Catalyst	Ag(µg/mg)		
Fe ₃ O ₄ @C-Ag (1: 1)	8.18		
Fe ₃ O ₄ @C-Ag(1: 2)	17.58		
Fe ₃ O ₄ @C-Ag (1: 3)	10.8		

Table S2. The isotherms of $Fe_3O_4@C-Ag(1:1),(1:2)$ and (1:3).

Catalyst	BET surface	average pore	pore
	area(m ² ·g ⁻¹)	diameter(nm)	volume(cm ³ ·g ⁻¹)
Fe ₃ O ₄ @C-Ag (1: 1)	106.21	4.4	0.2593
Fe ₃ O ₄ @C-Ag (1: 2)	83.59	5.0	0.2093
Fe ₃ O ₄ @C-Ag (1: 3)	99.24	4.6	0.2180