Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Figure S1. SEM images and the corresponding diameter distribution of nanofibers calcined at 650 °C for 3h: (a, b) CC, (c, d) CCF0.063, (e, f) CCF0.125 and (g, h) CCF0.25.

Figure S2. SEM images and corresponding EDX mapping of Ca, Co, Fe and O in CC, CCF0.063, CCF0.125 and CCF0.25.

Figure S3. HRTEM image of CCF0.25, (b-d) are enlarged images of (a).

Figure S4. (a) N_2 adsorption and desorption isotherm and (b) the pore size distribution of CC, CCF0.063, CCF0.125 and CCF0.25.

Figure S5. Original (dash dot dot lines) and *iR*-corrected (solid lines) OER LSV curves of CC, CCF0.063, CCF0.125 and CCF0.25 nanofibers.

Figure S6. CV curves of the electrocatalysts in 1 M KOH at 100 mV s⁻¹ with a rotation rate of 1,600 rpm: (a) CC, (b) CCF0.063, (c) CCF0.125 and (d) CCF0.25.

Figure S7. TEM images of the CCF0.25 nanofibers after stability test for 12 h.

Figure S8. High-resolution XPS spectra of Co 2p.

Figure S9. XPS spectra of (a) Co 3p and (b) Co 3s in the CC and CCF0.25.

Figure S10. XPS spectra of Fe 2p in the CC, CCF0.063, CCF0.125 and CCF0.25.

Table S1 elemental proportion of Co and Fe in CC, CCF0.063, CCF0.125 and CCF0.25

Samples	SEM mapping/at.%		
	Co	Fe	
CC	1	/	
CCF0.063	0.936	0.064	
CCF0.125	0.877	0.123	
CCF0.25	0.746	0.254	

Table S2. Detailed parameter	s of the electro	catalysts in ou	r work
------------------------------	------------------	-----------------	--------

Catalyst	η@10 mA cm ⁻²	Tafel slope	$R_{\rm ct}$	mass activity	Intrinsic activity
	(mV)	$(mV dec^{-1})$	$(\Omega \text{ cm}^2)$	$(A g^{-1})$	$(A m^{-2})$
CC	410	40.1	20.4	6.58	0.30
CCF0.063	390	40.2	10.6	18.1	0.88
CCF0.125	380	40.1	5.6	28.0	0.90
CCF0.25	346	39.3	2.1	129.9	3.71

	1		1 1		2	
Catalyst	Electrode	Electrolyt	η@10 mA	Tafel slope	Mass loading	Reference
	collector	e	$cm^{-2} (mV)$	(mV dec ⁻¹)	(mg cm ⁻²)	
CCF0.25	Glassy	1 M KOH	346	39.3	0.202	This work
	carbon (GC)					
ELCMO	GC	1 M KOH	329	33.8	0.4	Adv. Energy Mater.,
						2019 , 1803482
CoZn-Se	GC	1 M KOH	320	66	0.19	ACS Nano, 2019, 13, 5,
						5635-5645
La _{1-x} Ce _x CoO ₃	GC	1 M	380	80	0.734	Nanoscale, 2021, 13,
		NaOH				9952
{Cu2SiW12O40}@	GC	1 M KOH	340	73	-	J. Mater. Chem. A, 2021,
HKUST-1						9, 13161
Co–MoOx	GC	1 M KOH	340	49	0.28	J. Mater. Chem. A, 2019,
						7, 1005
CoNi-NS/rGO	GC	1 M KOH	330	62	0.48	Energy Storage Mater.,
						2019 , 16, 24
Ru/RuO ₂ on	GC	1M KOH	380	39	0.255	Chem Eng J, 2021, 418,
$La_{0.9}Fe_{0.92}Ru_{0.08}O_{3\delta}$						129422
Fe@N-CNT/HMCS	GC	1 M KOH	350	76	1.0	Appl, Catal., B, 2019,
						243, 151
Ni-MOF@CNT	GC	1 M KOH	370	138.2	-	Appl, Catal., B, 2021 ,
						285, 119793

Table S3. Comparison of OER properties over different catalysts in basic solution