Electronic supplementary information

for

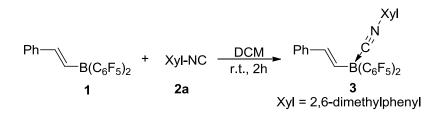
Formation of cyclic (boryl)iminomethane derivatives by insertion of isocyanides into the boron-carbon bond

Haiyu Zhou, Jingjing Wang, Yuxuan Meng, Fei Liu, Tongdao Wang*

Zhang Dayu School of Chemistry, Dalian University of Technology,

Dalian 116024, P. R. China. Email: wangtd@dlut.edu.cn

Table of contents


General information
Synthesis of compound 3
Synthesis of compound 4
Synthesis of compound 5a S14
Synthesis of compound 5b S18
Synthesis of compound 5c
Synthesis of compound 5d
Synthesis of compound 5e
Synthesis of compound 6a
Synthesis of compound 6b
Synthesis of compound 7

General information: All manipulations were performed under an atmosphere of dry and oxygen-free N₂ by means of standard Schlenk or glovebox techniques. *n*-hexane, toluene and dichloromethane (DCM) were collected from a (Mikrouna) solvent purification system and stored over activated 4 Å molecular sieves. Dichloromethane- d_2 (CD₂Cl₂), Chloroform-d (CDCl₃) and benzene-d₆ (C_6D_6) were degassed, dried over calcium hydride and stored over 4 Å molecular sieves in the glovebox for at least 8 h prior to use. Unless otherwise noted all chemicals were used as purchased. The following instruments were used for physical characterization of the compounds: HRMS: Agilent 6224 TOF LC/MS; NMR: Bruker Avance II 400MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, ¹⁹F: 377 MHz, ¹¹B: 128 MHz). NMR chemical shifts are given relative to SiMe₄ and referenced to the respective solvent signals (¹H and ¹³C). Some NMR assignments were supported by additional 2D NMR experiments.

X-Ray diffraction: Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture CMOS-based diffractometer (**3**, **4**, **5a**, **6a**, **6b**, **7**, and **8**) with graphite-monochromated Mo_{Ka} radiation ($\lambda = 0.71073$ Å). All of the data were corrected for absorption effects using the multi-scan technique. Final unit cell parameters were based on all observed reflections from integration of all frame data. The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that implanted in Olex2. For all compounds, all non-H atoms were refined anisotropically unless otherwise stated, and hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. CCDC 2112836-2112839, 2112841, and 2112842 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures/</u>.

Materials: Compound 1¹ and N-propargyldiisopropylamine² were prepared according to the literature procedure. Compound 4³ was synthesized according to a modified literature procedure. [(1) D. J. Parks, W. E. Piers and G. P. A. Yap, *Organometallics*, 1998, **17**, 5492-5503. (2) T. Sugiishi, A. Kimura and H. Nakamura, *J. Am. Chem. Soc*, 2010, **132**, 5332–5333. (3) T. Wang, C. G. Daniliuc, C. Muck-Lichtenfeld, G. Kehr and G. Erker, *J. Am. Chem. Soc*, 2018, **140**, 3635–3643.]

Synthesis of compound 3

A solution of compounds **1** (200.1 mg, 0.45 mmol) and **2a** (58.6 mg, 0.45 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the

removal of the solvent under vacuum, *n*-hexane (5 mL) was added to the residue. The obtained suspension was kept at -20 $^{\circ}$ C for 2 h, which was collected by filtration and dried in vacuo to give a white solid. Yield: 203.2 mg, 79%.

[Comments: the solution of compound **3** in toluene is stable for at least 12 h at 100 $\,^{\circ}$ C, and decomposed to several uncharacterized speices at higher temperature.]

HRMS (ESI): m/z calcd for $C_{29}H_{17}BF_{10}N$: 580.1289 [M+H]⁺; found: 580.1286.

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound **3** in CH_2Cl_2 covered with *n*-hexane at -25 °C.

¹**H NMR** (400 MHz, 298 K, CDCl₃): δ = 7.20-7.43 (m, 8H, Ph), 7.04 (d, 1H, ³*J*_{HH} = 18.0 Hz, ^BC*H*=), 6.50 (d, 1H, ³*J*_{HH} = 18.0 Hz, ^{Ph}C*H*=), 2.46 (s, 6H, C*H*₃).

¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃): $\delta = 147.9$ (dm, ${}^{1}J_{FC} = 241.2$ Hz, *m*-*C*₆F₅), 140.1 (dm, ${}^{1}J_{FC} = 251.7$ Hz, *p*-*C*₆F₅), 137.4 (dm, ${}^{1}J_{FC} = 252.9$ Hz, *o*-*C*₆F₅), 116.5 (br, *i*-*C*₆F₅), 139.3, 137.2, 132.2, 128.9, 128.6, 127.3, 126.3 (Ph), 137.5 (^{Ph}CH=), 132.4 (br, ^BCH=), 123.1 (br, ^BC=N), 18.4 (CH₃).

¹H-¹³C GHSQC (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C: 7.04/132.4 (^BCH=), 6.50/137.5 (^{Ph}CH=), 2.46/18.4 (CH₃). ¹¹**B** NMR (128 MHz, 298 K, C₆D₆): $\delta = -18.5 (v_{1/2} \sim 176 \text{ Hz}).$ ¹⁹**F**{¹**H**} NMR (377 MHz, 298 K, C₆D₆): $\delta = -131.7 \text{ (m, 4F, } o\text{-}C_6F_5),$ -156.6 (t, ${}^{3}J_{\text{FF}} = 20.8 \text{ Hz}, 2\text{F}, p\text{-}C_6F_5), -162.9 (m, 4\text{F}, m\text{-}C_6F_5) [\Delta \delta^{19}F_{m,p} = 6.3].$

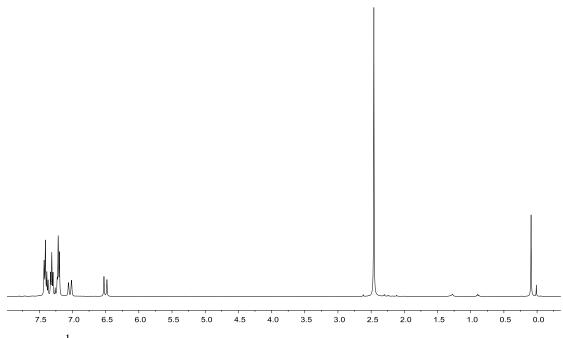
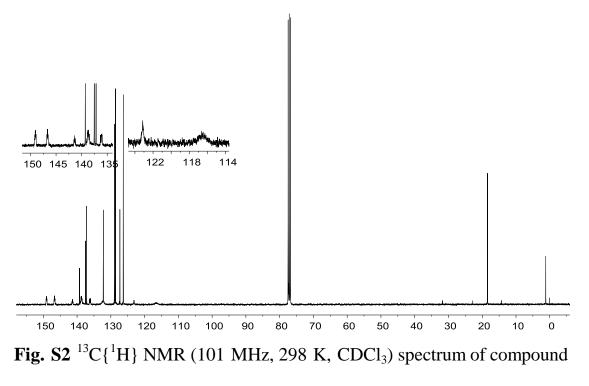



Fig. S1 1 H NMR (400 MHz, 298 K, CDCl₃) spectrum of compound 3.

3.

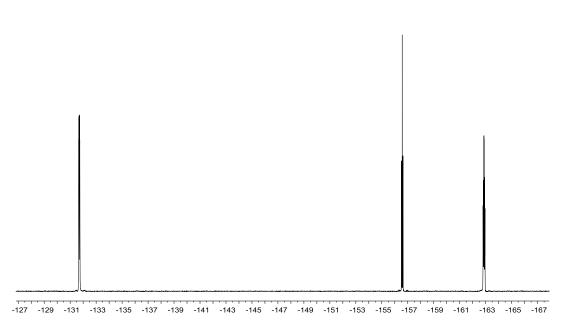
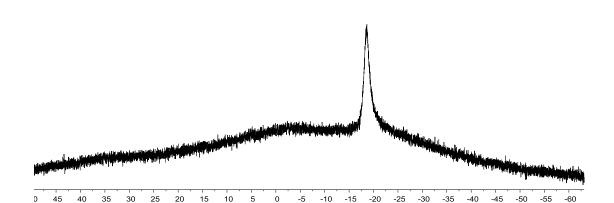



Fig. S3 19 F{ 1 H} NMR (377 MHz, 298 K, C₆D₆) spectrum of compound 3.

Fig. S4¹¹B NMR (128 MHz, 298 K, C₆D₆) spectrum of compound **3**. **X-ray crystal structure analysis of compound 3:** formula C₂₉H₁₆BF₁₀N, M = 579.24, colourless crystal, 0.46 × 0.43 × 0.24 mm, a = 8.8271(7), b =11.0748(8), c = 14.0033(9) Å, $a = 103.662(2)^{\circ}$, $\beta = 107.548(2)^{\circ}$, $\gamma =$ 100.309(2) °, V = 1221.19(15) Å³, $\rho_{calc} = 1.575$ gcm⁻³, $\mu = 0.145$ mm⁻¹, empirical absorption correction (0.7120 ≤ T ≤ 0.7455), Z = 2, triclinic, space group *P-1*, $\lambda = 0.71073$ Å, T = 200.0 K, ω and φ scans, 30127 reflections collected (±h, ±k, ±J), 7121 independent ($R_{int} = 0.0567$) and 4871 observed reflections [$I > 2\sigma(I)$], 372 refined parameters, R = 0.0446, $wR^2 = 0.1037$, max. (min.) residual electron density 0.26 (-0.20) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

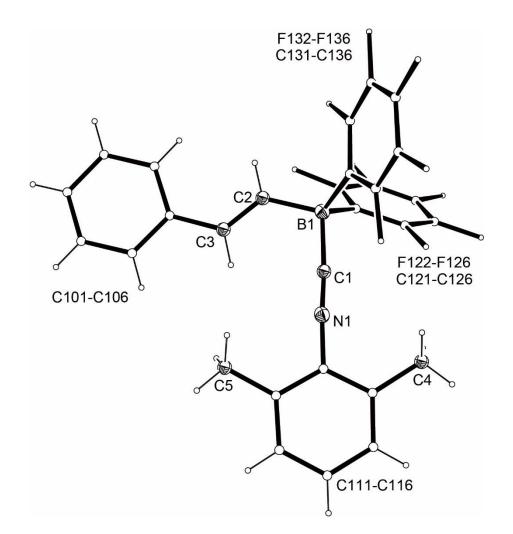
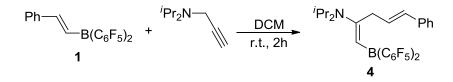



Fig. S5 A view of the molecular structure of compound 3.

Synthesis of compound 4

A solution of N-propargyldiisopropylamine (186.5 mg, 1.34 mmol) and compound **1** (499.3 mg, 1.11 mmol) in CH_2Cl_2 (10 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (5 ml) and dried in vacuo to give a yellow solid. Yield: 571.0 mg, 87%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound **4** in CH_2Cl_2 covered with *n*-hexane at -25 °C.

HRMS (ESI): m/z calcd for $C_{29}H_{23}BF_{10}N$: 586.1769 [M-H]⁻; found: 586.1764.

¹**H NMR** (400 MHz, 298 K, C₆D₆): δ = 7.20 (m, 2H, *o*-Ph), 7.10 (m, 2H, *m*-Ph), 7.02 (m, 1H, *p*-Ph), 6.23 (d, ${}^{3}J_{\rm HH}$ = 16.1 Hz, 1H, =CH^{Ph}), 5.88 (s, 1H, =HC^B), 5.82 (dt, ${}^{3}J_{\rm HH}$ = 16.1 and 5.5 Hz, 1H, ^{CH2}CH=), 3.68 and 3.14 (each br, each 1H, CH^{iPr}), 3.13 (br, 2H, CH₂), 1.25 and 0.57 (each d, each 6H, ${}^{3}J_{\rm HH}$ = 5.9 Hz, CH₃^{iPr}).

¹³C{¹H} NMR (101 MHz, 298 K, C₆D₆): $\delta = 171.6$ (^NC=), 136.9 (*i*-Ph), 133.0 (=CH^{Ph}), 129.1 (*m*-Ph), 128.3 (*p*-Ph), 126.3 (*o*-Ph), 124.7 (^{CH2}CH=), 109.9 (br, =HC^B), 51.9 and 47.8 (CH^{iPr}), 36.0 (CH₂), 20.1 and 19.9 (CH₃^{iPr}) [C₆F₅ not listed].

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, C_6D_6): $\delta^1H/\delta^{13}C$: 7.20/126.3 (*o*-Ph), 7.10/129.1 (*m*-Ph), 7.02/128.3 (*p*-Ph), 6.23/133.0 (=*CH*^{Ph}), 5.88/109.9 (=*CH*^B), 5.82/124.7 (^{CH2}*CH*=), 3.68/51.9 and 3.14/47.8 (*CH*^{iPr}), 3.13/36.0 (*CH*₂^{CH=}), 1.25/20.1 and 0.57/19.9 (*CH*₃^{iPr}).

¹H-¹³C GHMBC (400 MHz/101 MHz, 298 K, C₆D₆): 7.10/136.9 (*m*-Ph/*i*-Ph), 5.88/171.6 (= $HC^{B/N}C$ =).

¹¹**B NMR** (128 MHz, 298 K, C₆D₆): $\delta = 45.3 (v_{1/2} \sim 700 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, C₆D₆): δ = -131.0 (m, 2F, *o*-C₆F₅), -154.6, (t, ${}^{3}J_{FF} = 20.0$ Hz, 1F, *p*-C₆F₅), -162.4 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 7.8]; -132.8 (m, 2F, *o*-C₆F₅[']), -155.3 (t, ${}^{3}J_{FF} = 20.3$ Hz, 1F, *p*-C₆F₅[']), -162.8 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 7.5].

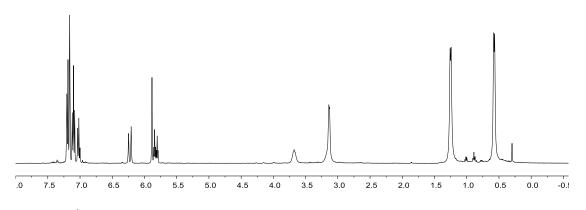


Fig. S6 1 H NMR (400 MHz, 298 K, C₆D₆) spectrum of compound 4.

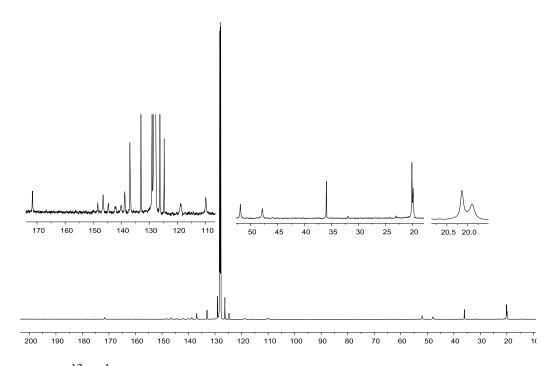


Fig. S7 ${}^{13}C{}^{1}H$ NMR (101 MHz, 298 K, C_6D_6) spectrum of compound 4.

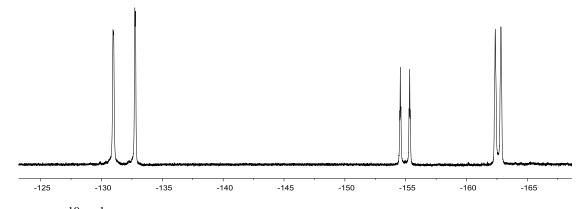


Fig. S8 ${}^{19}F{}^{1}H{}$ NMR (377 MHz, 298 K, C₆D₆) spectrum of compound 4.

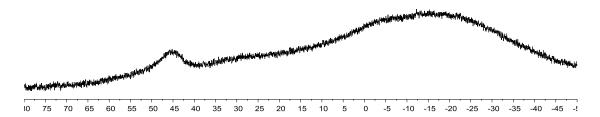


Fig. S9 ¹¹B NMR (128 MHz, 298 K, C_6D_6) spectrum of compound 4.

X-ray crystal structure analysis of compound 4: formula C₂₉H₂₄BF₁₀N, M = 587.30, yellow crystal, $0.23 \times 0.25 \times 0.61$ mm, a = 28.371(3), b = 8.6644(9), c = 22.055(2) Å, $\alpha = \beta = \gamma = 90.000^{\circ}$, V = 5421.5(9) Å³, $\rho_{calc} =$ 1.439 gcm⁻³, $\mu = 0.131$ mm⁻¹, empirical absorption correction ($0.6251 \le T$ ≤ 0.7461), Z = 8, monoclinic, space group *Pbcn*, $\lambda = 0.71073$ Å, T = 200.0 K, ω and φ scans, 27507 reflections collected ($\pm h$, $\pm k$, \pm), 4738 independent ($R_{int} = 0.1325$) and 2499 observed reflections [$I > 2\sigma(I)$], 378 refined parameters, R = 0.0682, $wR^2 = 0.1128$, max. (min.) residual electron density 0.18 (-0.23) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

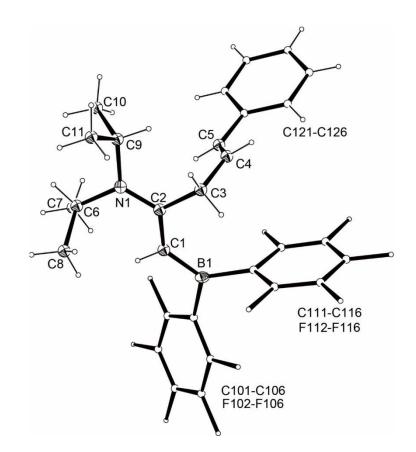
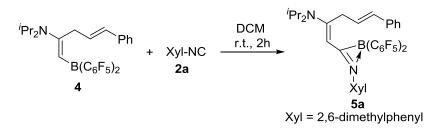



Fig. S10 A view of the molecular structure of compound 4.

Synthesis of compound 5a

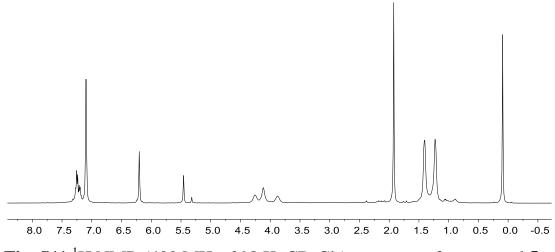
A solution of compounds **4** (176.9 mg, 0.30 mmol) and **2a** (39.5 mg, 0.30 mmol) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane $(3 \times 2 \text{ mL})$ and dried in vacuo to give compound **5a** as a white solid. Yield: 179.6 mg, 83%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound **5a** in CH_2Cl_2 covered with *n*-hexane at -25 °C.

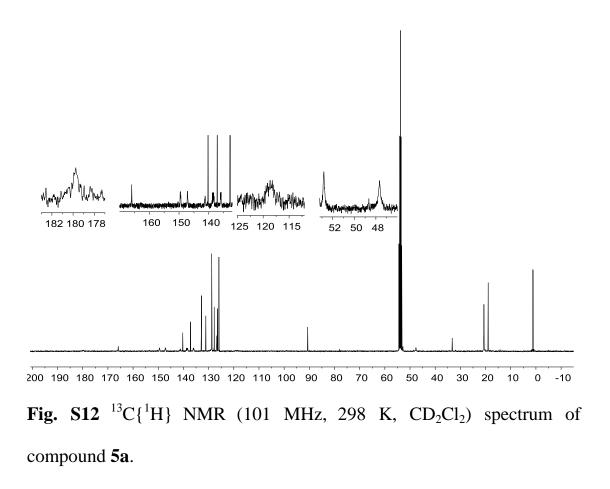
HRMS (ESI): m/z calcd for $C_{40}H_{35}BF_{10}N_3$: 758.2770 [M-H+CH₃CN]⁻; found: 758.2769.

¹**H NMR** (400 MHz, 298 K, CD_2Cl_2): $\delta = 7.10-7.27$ (m, 8H, Ph), 6.20 (s, 2H, $CH=CH^{Ph}$), 5.46 (s, 1H, $CH=C^{-1}$), 4.26 and 3.87 (each br, each 1H, CH^{iPr}), 4.11 (br, 2H, CH_2), 1.92 (s, 6H, CH_3^{Ph}), 1.41 and 1.23 (each br, each 6H, CH_3^{iPr}).

¹³C{¹H} NMR (101 MHz, 298 K, CD₂Cl₂): $\delta = 179.7$ (brm, BC), 165.9 (^{iPr}NC), 148.3 (dm, ¹*J*_{FC} = 237.0 Hz, *m*-C₆F₅), 140.0 (dm, ¹*J*_{FC} = 250.0 Hz, *p*-C₆F₅), 137.1 (dm, ¹*J*_{FC} = 250.8 Hz, *o*-C₆F₅), 118.6 (brm, *i*-C₆F₅), 140.3,


137.2, 132.9, 128.8, 128.7, 127.8, 126.4, 125.9 (Ph), 131.1 and 126.8 $(CH=CH^{Ph})$, 90.6 $(CH^{=C})$, 52.8 and 47.7 (each br, $CH^{iPr})$, 33.3 (CH_2) , 20.7 (CH_3^{iPr}) , 19.0 (CH_3^{Ph}) .

¹H-¹³C GHSQC (400 MHz/101 MHz, 298 K, CD₂Cl₂): δ^1 H/ δ^{13} C: 6.20/(131.1, 126.8) (*CH=CH*^{Ph}), 5.46/90.6 (*CH^{=C}*), 4.26/52.8 and 3.87/47.7 (*CH*^{iPr}), 4.11/33.3 (*CH*₂), 1.92/19.0 (*CH*₃^{Ph}), (1.40, 1.23)/20.7 (*CH*₃^{iPr}).


¹**H**-¹³**C GHMBC** (400 MHz/101 MHz, 298 K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 6.20/165.9 (CH=CH^{Ph}/^{iPr}NC), 5.46/179.7 (CH^{=C}/BC).


¹¹**B NMR** (128 MHz, 298 K, CD_2Cl_2): $\delta = -16.1 (v_{1/2} \sim 100 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, CD₂Cl₂): $\delta = -133.9$ (m, 4F, o-C₆F₅), -159.1 (t, ${}^{3}J_{FF} = 20.1$ Hz, 2F, p-C₆F₅), -164.9 (m, 4F, m-C₆F₅) [$\Delta \delta^{19}F_{m,p} = 5.8$].

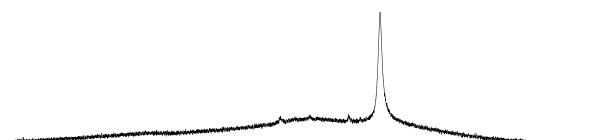


Fig. S11 ¹H NMR (400 MHz, 298 K, CD₂Cl₂) spectrum of compound **5a**.

-130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -16 Fig. S13 $^{19}F{^{1}H}$ NMR (377 MHz, 298 K, CD_2Cl_2) spectrum of compound 5a.

25 20 15 10 5 -5 -10 -15 -20 -25 -30 -35 -40 -45 -5 45 40 35 30 0 Fig. S14 ¹¹B NMR (128 MHz, 298 K, CD_2Cl_2) spectrum of compound 5a. structure analysis of compound 5a: formula X-rav crystal $C_{38}H_{33}BF_{10}N_2$, M = 718.47, colourless crystal, 0.46 $\times 0.34 \times 0.12$ mm, a = 14.684(6), b = 12.759(6), c = 19.053(8) Å, $\alpha = \gamma = 90.000$ °, $\beta =$ 99.678(9) °, V = 3519(3)Å³, $\rho_{calc} = 1.356$ gcm⁻³, $\mu = 0.116$ mm⁻¹, empirical absorption correction (0.5369 \leq T \leq 0.7461), Z = 4, monoclinic, space group P21/n, $\lambda = 0.71073$ Å, T = 150.2 K, ω and φ scans, 25560 reflections collected ($\pm h$, $\pm k$, $\pm l$), 5041 independent ($R_{int} = 0.2428$) and 2048 observed reflections [$I \ge 2\sigma(I)$], 466 refined parameters, R = 0.0846, $wR^2 = 0.1723$, max. (min.) residual electron density 0.30 (-0.37) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

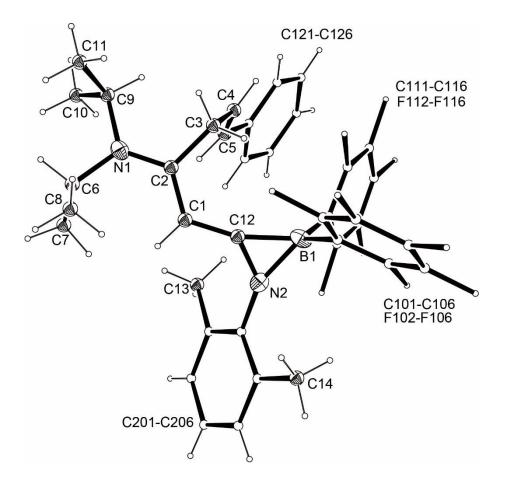
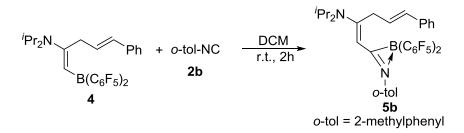



Fig. S15 A view of the molecular structure of compound 5a.

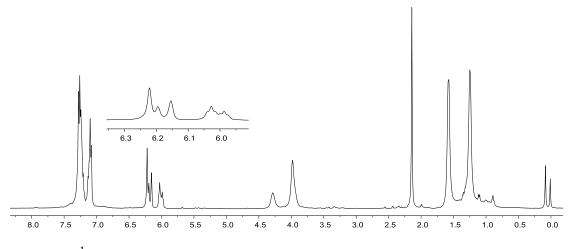
Synthesis of compound 5b

A solution of compounds **4** (117.8 mg, 0.20 mmol) and **2b** (23.5 mg, 0.20 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (2 mL) and dried in vacuo to give a white solid. Yield:

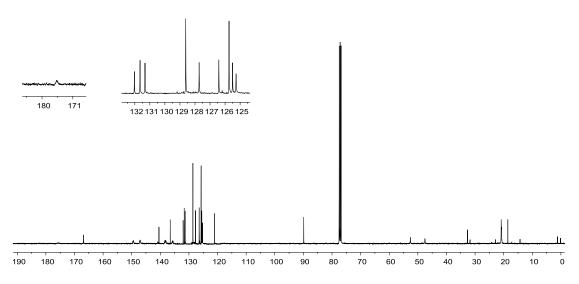
121.2 mg, 86%.

HRMS (ESI): m/z calcd for $C_{37}H_{32}BF_{10}N_2$: 705.2493 [M+H]⁺; found: 705.2492.

¹**H NMR** (400 MHz, 298 K, CDCl₃): $\delta = 7.08-7.28$ (m, 9H, Ph), 6.22 (s, 1H, ^{C=}CH), 6.17 (d, ³*J*_{HH} = 16.3 Hz, 1H, =C*H*^{Ph}), 6.01 (dt, ³*J*_{HH} = 16.1 Hz, ³*J*_{HH} = 4.3 Hz, 1H, ^{CH2}C*H*=), 4.29 and 3.97 (each br, each 1H, C*H*^{iPr}), 3.98 (br, 2H, C*H*₂), 2.14 (s, 3H, C*H*₃^{Ph}), 1.58 and 1.25 (each br, each 6H, C*H*₃^{iPr}).


¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃): $\delta = 175.8$ (brm, BC), 166.9 (^{iPr}NC), 148.3 (dm, ¹J_{FC} = 237.8 Hz, *m*-C₆F₅), 139.7 (dm, ¹J_{FC} = 250.2 Hz, *p*-C₆F₅), 136.9 (dm, ¹J_{FC} = 251.3 Hz, *o*-C₆F₅), 118.3 (brm, *i*-C₆F₅), 140.5, 136.5, 132.0, 131.7, 128.6, 127.7, 126.4, 125.7, 125.5, 121.0 (Ph), 131.3 (=CH^{Ph}), 125.3 (^{CH2}CH=), 89.9 (^{C=}CH), 52.6 and 47.5 (each br, CH^{iPr}), 32.6 (CH₂), 20.9 and 20.7 (CH₃^{iPr}), 18.5 (CH₃^{Ph}).

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C: 6.22/89.9 (^{C=}*CH*), 6.17/131.3 (=*CH*^{Ph}), 6.01/125.3 (^{CH2}*CH*=), 4.29/52.6 and 3.97/47.5 (*CH*^{iPr}), 3.98/32.6 (*CH*₂), 2.14/18.5(*C*H₃^{Ph}), 1.58/20.9 and 1.25/20.7 (*CH*₃^{iPr}).


¹H-¹³C GHMBC (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C : 6.22/175.8 (^{C=}CH/BC), 6.17/166.9 (^{CH2}CH=/^{iPr}NC).

¹¹**B** NMR (128 MHz, 298 K, CDCl₃): $\delta = -17.5$ (v_{1/2} ~ 124 Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, CDCl₃): δ = -134.1 (m, 4F, *o*-C₆F₅), -158.1 (t, ${}^{3}J_{FF} = 20.4$ Hz, 2F, *p*-C₆F₅), -164.1 (m, 4F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 6.0].

Fig. S16 ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of compound **5b**.

Fig. S17 ¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃) spectrum of compound **5b**.

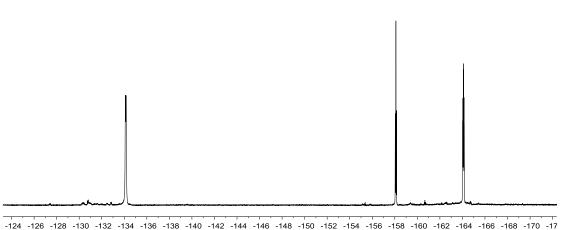
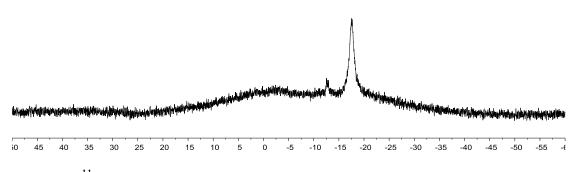
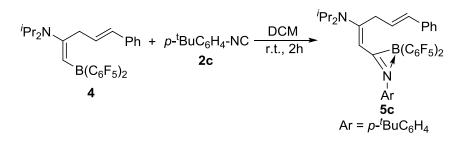




Fig. S18 ¹⁹F{¹H} NMR (377 MHz, 298 K, CDCl₃) spectrum of compound 5b.

Fig. S19¹¹B NMR (128 MHz, 298 K, CDCl₃) spectrum of compound **5b**.

Synthesis of compound 5c

A solution of compounds **4** (108.1 mg, 0.18 mmol) and **2c** (29.3 mg, 0.18 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed

with *n*-hexane (2 mL) and dried in vacuo to give a white solid. Yield: 116.2 mg, 85%.

HRMS (ESI): m/z calcd for $C_{40}H_{38}BF_{10}N_2$: 747.2963 [M+H]⁺; found: 747.2970.

¹**H NMR** (400 MHz, 298 K, CDCl₃): δ = 7.04-7.48 (m, 9H, Ph), 6.37 (s, 1H, ^{C=}CH), 6.12 (d, ³*J*_{HH} = 16.2 Hz, 1H, =C*H*^{Ph}), 5.99 (dt, ³*J*_{HH} = 16.1 Hz, ³*J*_{HH} = 4.7 Hz, 1H, ^{CH2}C*H*=), 4.29 and 3.99 (each br, each 1H, C*H*^{iPr}), 4.09 (br, 2H, C*H*₂), 1.64 (d, ³*J*_{HH} = 5.1 Hz, 3H) and 1.26 (d, ³*J*_{HH} = 4.0 Hz, 3H) (C*H*₃^{iPr}), 1.34 (s, 9H, C*H*₃^{tBu}).

¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃): $\delta = 173.5$ (brm, BC), 167.3 (^{iPr}NC), 148.1 (dm, ¹*J*_{FC} = 239.1 Hz, *m*-C₆F₅), 139.6 (dm, ¹*J*_{FC} = 250.6 Hz, *p*-C₆F₅), 136.9 (dm, ¹*J*_{FC} = 247.2 Hz, *o*-C₆F₅), 117.2 (brm, *i*-C₆F₅), 148.2, 138.3, 136.5, 128.6, 127.7, 126.4, 125.7, 121.0 (Ph), 131.2 (=CH^{Ph}), 125.3 (^{CH2}CH=), 90.7 (^{C=}CH), 52.7 and 47.6 (each br, CH^{iPr}), 34.7 (*C*^{tBu}), 32.4 (*C*H₂), 31.5(*C*H₃^{tBu}), 20.8 (*C*H₃^{iPr}).

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C: 6.37/90.7 (^{C=}*CH*), 6.12/131.2 (=*CH*^{Ph}), 5.99/125.3 (^{CH2}*CH*=), 4.29/52.7 and 3.99/47.6 (*CH*^{iPr}), 4.09/32.4 (*CH*₂), (1.64, 1.26)/20.8 (*CH*₃^{iPr}), 1.34/31.5 (*C*H₃^{tBu}).

¹H-¹³C GHMBC (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C : 6.37/173.5 (^{C=}CH/BC), 5.99/167.3 (^{CH2}CH=/^{iPr}NC), 1.34/34.7 (CH₃^{tBu}/C^{tBu}). ¹¹**B** NMR (128 MHz, 298 K, CDCl₃): $\delta = -19.6 (v_{1/2} \sim 125 \text{ Hz}).$ ¹⁹**F**{¹**H**} NMR (377 MHz, 298 K, CDCl₃): $\delta = -134.0 \text{ (m, 4F, } o\text{-}C_6F_5),$ -158.6 (t, ${}^{3}J_{\text{FF}} = 20.3 \text{ Hz}, 2\text{F}, p\text{-}C_6F_5), -164.2 \text{ (m, 4F, } m\text{-}C_6F_5) [<math>\Delta \delta^{19}F_{m,p} =$ 5.6].

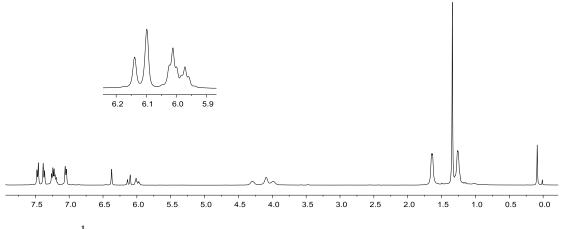
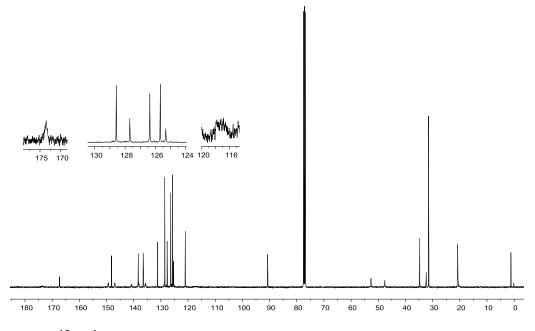
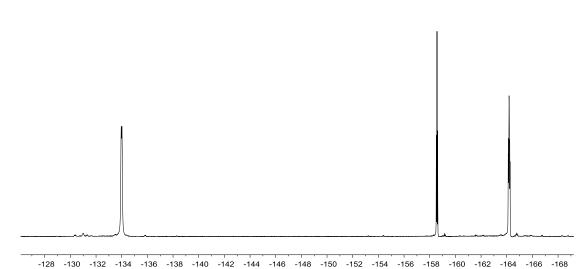




Fig. S20 ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of compound 5c.

Fig. S21 ¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃) spectrum of compound **5c**.

Fig. S22 ¹⁹F{¹H} NMR (377 MHz, 298 K, CDCl₃) spectrum of compound **5**c.

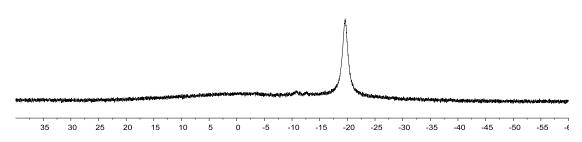
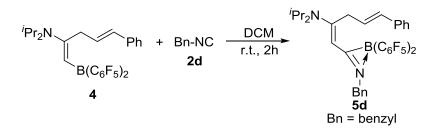



Fig. S23 ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectrum of compound 5c.

Synthesis of compound 5d

A solution of compounds **4** (120.0 mg, 0.20 mmol) and **2d** (23.9 mg, 0.20 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed

with *n*-hexane (2 mL) and dried in vacuo to give a white solid. Yield: 102.3 mg, 71%.

HRMS (ESI): m/z calcd for C₃₇H₃₂BF₁₀N₂: 705.2493 [M+H]⁺; found: 705.2495.

¹**H NMR** (400 MHz, 298 K, CDCl₃): δ = 7.06-7.31 (m, 10H, Ph), 6.08 (d, ³*J*_{HH} = 16.2 Hz, 1H, =C*H*^{Ph}), 5.99 (dt, ³*J*_{HH} = 16.1 Hz, ³*J*_{HH} = 4.8 Hz, 1H, ^{CH2}C*H*=), 5.18 (s, 1H, ^{C=}C*H*), 4.87 (s, 2H, C*H*₂^{Ph}), 4.14 and 3.72 (br, each 1H, C*H*^{iPr}), 3.97 (br, 2H, C*H*₂), 1.16 (br, 12H, C*H*₃^{iPr}).

¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃): $\delta = 179.6$ (brm, BC), 164.3 (^{iPr}NC), 148.0 (dm, ¹J_{FC} = 239.1 Hz, *m*-C₆F₅), 139.5 (dm, ¹J_{FC} = 250.1 Hz, *p*-C₆F₅), 136.9 (dm, ¹J_{FC} = 251.4 Hz, *o*-C₆F₅), 117.6 (brm, *i*-C₆F₅), 136.8, 136.4, 128.8, 128.7, 128.6, 127.7, 127.5, 125.7 (Ph), 130.9 (=CH^{Ph}), 126.2 (^{CH2}CH=), 88.3 (^{C=}CH), 52.3 (CH₂^{Ph}), 51.9 and 46.9 (each br, ^{iPrN}CH), 32.4 (CH₂), 20.6 and 20.3 (CH₃^{iPr}).

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C: 6.08/130.9 (=*CH*^{Ph}), 5.99/126.2 (^{CH2}*CH*=), 5.18/88.3 (^{C=}*CH*), 4.87/52.3 (*CH*₂^{Ph}), 4.14/51.9 and 3.71/46.9 (*CH*^{iPr}), 3.97/32.4 (*CH*₂), 1.16/(20.6, 20.3) (*CH*₃^{iPr}).

¹¹**B** NMR (128 MHz, 298 K, CDCl₃): $\delta = -18.7 (v_{1/2} \sim 70 \text{ Hz}).$ ¹⁹**F**{¹**H**} NMR (377 MHz, 298 K, CDCl₃): $\delta = -134.6 \text{ (m, 4F, } o\text{-}C_6F_5),$ -158.9 (t, ${}^{3}J_{\text{FF}} = 20.2 \text{ Hz}, 2\text{F}, p\text{-}C_6F_5), -164.3 \text{ (m, 4F, } m\text{-}C_6F_5) [<math>\Delta \delta^{19}F_{m,p} =$ 5.4].

S25

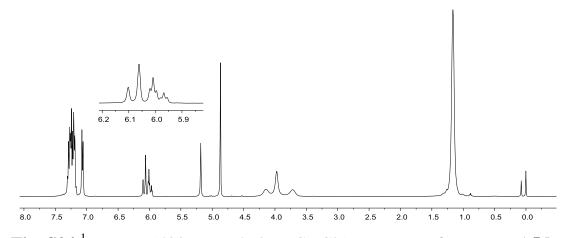
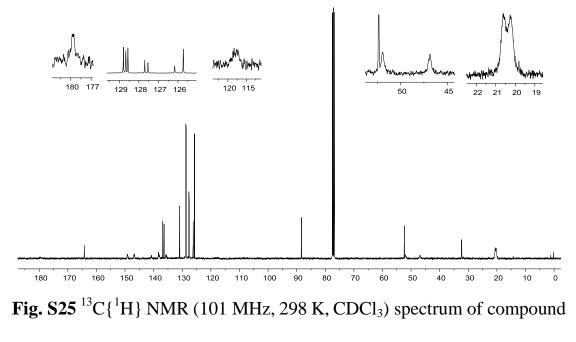



Fig. S24 ¹H NMR (400 MHz, 298 K, CDCl₃) spectrum of compound 5d.

5d.

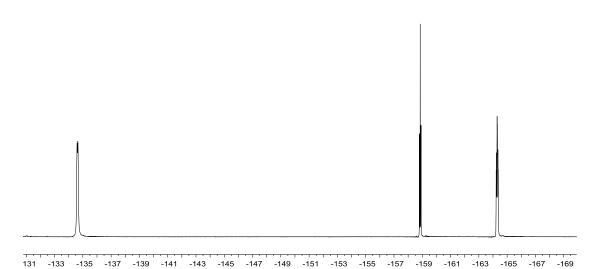


Fig. S26 $^{19}F{^{1}H}$ NMR (377 MHz, 298 K, CDCl₃) spectrum of compound 5d.

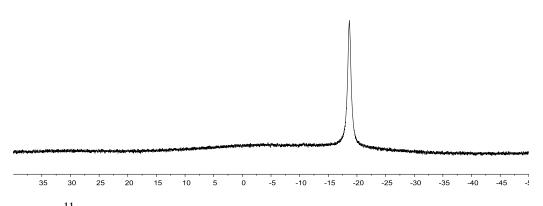
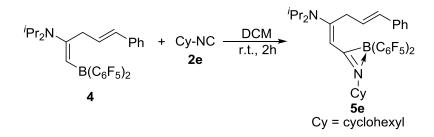



Fig. S27¹¹B NMR (128 MHz, 298 K, CDCl₃) spectrum of compound 5d.

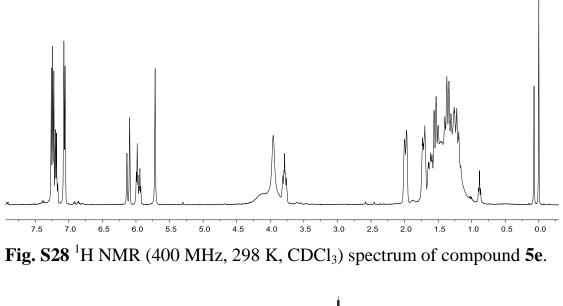
Synthesis of compound 5e

A solution of compounds 4 (120.0 mg, 0.20 mmol) and 2e (22.3 mg, 0.20

mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (2 mL) and dried in vacuo to give a white solid. Yield: 110.3 mg, 78%.

HRMS (ESI): m/z calcd for $C_{36}H_{36}BF_{10}N_2$: 697.2806 [M+H]⁺; found: 697.2812.

¹**H NMR** (400 MHz, 298 K, CDCl₃): $\delta = 7.06-7.26$ (m, 5H, Ph), 6.12 (d, ³*J*_{HH} = 16.1 Hz, 1H, =*CH*^{Ph}), 5.96 (dt, ³*J*_{HH} = 16.1 Hz, ³*J*_{HH} = 5.2 Hz, 1H, ^{CH2}*CH*=), 5.72 (s, 1H, ^{C=}*CH*), 4.14 (br, 1H, *CH*^{iPr}), 3.96 (br, 3H, *CH*^{iPr} and *CH*₂), 3.79 (m, 1H, *CH*^{Cy}), 1.16-2.00 (m, 22H, *CH*₂^{Cy} and *CH*₃^{iPr}).


¹³C{¹H} NMR (101 MHz, 298 K, CDCl₃): $\delta = 178.5$ (brm, BC), 163.9 (^{iPr}NC), 148.0 (dm, ¹*J*_{FC} = 239.1 Hz, *m*-C₆F₅), 139.5 (dm, ¹*J*_{FC} = 240.4 Hz, *p*-C₆F₅), 136.9 (dm, ¹*J*_{FC} = 250.7 Hz, *o*-C₆F₅), 119.1 (brm, *i*-C₆F₅), 136.9, 128.5, 127.5, 125.7 (Ph), 130.9 (=CH^{Ph}), 126.2 (^{CH2}CH=), 88.3 (^{C=}CH), 58.5 (CH^{Cy}), 51.8 and 47.1 (br, ^{iPrN}CH), 32.3 (CH₂), 31.7, 25.8, 25.0, 20.7 (^{Cy}CH₂ and CH₃^{iPr}).

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, CDCl₃): δ^1 H/ δ^{13} C: 6.12/130.9 (=*CH*^{Ph}), 5.96/126.2 (^{CH2}*CH*=), 5.72/88.3 (^{C=}*CH*), 4.14/51.8 and 3.96/47.1 (*CH*^{iPr}), 3.96/32.3 (*CH*₂), 3.79/58.5(*CH*^{Cy}).

¹H-¹³C GHMBC (400 MHz/101 MHz, 298 K, CDCl₃): δ^{1} H/ δ^{13} C: 5.72/178.5 (^{C=}CH/BC), 5.96/163.9 (^{CH2}CH=/^{iPr}NC).

¹¹**B** NMR (128 MHz, 298 K, CDCl₃): $\delta = -19.8 (v_{1/2} \sim 75 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, CDCl₃): δ = -134.6 (m, 4F, *o*-C₆F₅), -159.1 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 2F, *p*-C₆F₅), -164.5 (m, 4F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 5.4].

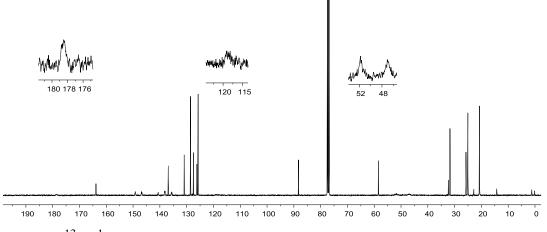


Fig. S29 ${}^{13}C{}^{1}H$ NMR (101 MHz, 298 K, CDCl₃) spectrum of compound

5e.

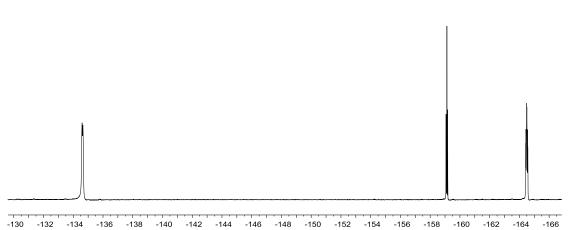


Fig. S30 $^{19}F{^{1}H}$ NMR (377 MHz, 298 K, CDCl₃) spectrum of compound 5e.

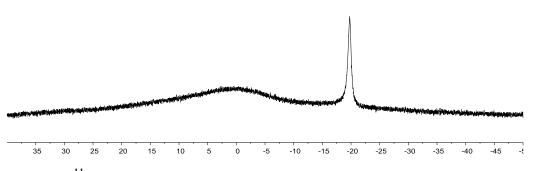
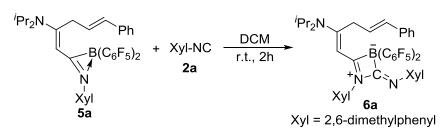
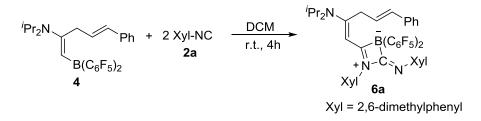



Fig. S31¹¹B NMR (128 MHz, 298 K, CDCl₃) spectrum of compound 5e.

Synthesis of compound 6a



A solution of compounds **5a** (200.0 mg, 0.28 mmol) and **2a** (40.2 mg, 0.31 mmol) in CH_2Cl_2 (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was

washed with *n*-hexane $(3 \times 3 \text{ ml})$ and dried in vacuo to give a white solid. Yield: 200.0 mg, 85%.

Method B

A solution of compounds 4(100.0 mg, 0.17 mmol) and 2a (44.6 mg, 0.34 mmol) in CH₂Cl₂ (5 mL) was stirred at room temperature for 4 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (3×3 ml) and dried in vacuo to give a white solid. Yield: 117.3 mg, 81%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound **6a** in CH_2Cl_2 covered with *n*-hexane at -25 °C.

HRMS (ESI): m/z calcd for $C_{47}H_{43}BF_{10}N_3$: 850.3385 [M+H]⁺; found: 850.3383.

¹**H NMR** (400 MHz, 298 K, CD₂Cl₂): $\delta = 6.69-7.32$ (m, 11H, Ph), 6.00 (d, 1H, ${}^{3}J_{\text{HH}} = 16.1$ Hz, ${}^{\text{Ph}}CH =$), 5.71 (s, 1H, ${}^{\text{C}=}CH$), 5.50 (dt, 1H, ${}^{3}J_{\text{HH}} = 16.2$ Hz, ${}^{3}J_{\text{HH}} = 4.8$ Hz, ${}^{\text{CH2}}CH =$), 4.18 and 3.81 (each m, each 1H, CH^{iPr}), 3.49 (m, 2H, CH₂), 2.38 and 1.71 (s, each 6H, CH_{3}^{Ph}), 1.13 (${}^{3}J_{\text{HH}} = 6.6$ Hz), 1.19 (${}^{3}J_{\text{HH}} = 7.1$ Hz) (each d, each 3H, CH_{3}^{iPr}). ¹³C{¹H} NMR (101 MHz, 298 K, CD₂Cl₂): $\delta = 199.3$ (br, NCN) ,174.5 (br, BC^{CH}), 169.4 (^{iPrN}C), 148.4 (dm, ¹J_{FC} = 238.6 Hz, *m*-C₆F₅), 139.7 (dm, ¹J_{FC} = 242.7 Hz, *p*-C₆F₅), 137.1 (dm, ¹J_{FC} = 240.5 Hz, *o*-C₆F₅), 116.7 (brm, *i*-C₆F₅), 147.1, 137.2, 136.1, 134.1, 129.5, 129.00, 128.95, 128.3, 127.5, 127.1, 125.9, 122.1 (Ph), 131.9 (^{Ph}CH=), 122.7 (^{CH2}CH=), 99.0 (^{C=}CH), 54.0 and 48.7 (each br, CH^{iPr}), 33.1 (CH₂), 20.7 and 20.2 (CH₃^{iPr}), 18.2 (CH₃^{Ph}).

¹**H**-¹³**C GHSQC** (400 MHz/101 MHz, 298 K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 6.00/131.9 (^{Ph}*CH*=), 5.71/99.0 (^{C=}*CH*), 5.50/122.7 (^{CH2}*CH*=), 4.18/54.0 and 3.81/48.7 (*CH*^{iPr}), 3.49/33.1 (*CH*₂), (2.38, 1.71)/18.2 (*CH*₃^{Ph}), 1.19/20.7 and 1.13/20.2 (*CH*₃^{iPr}).

¹**H**-¹³**C GHMBC** (400 MHz/101 MHz, 298 K, CD₂Cl₂): δ^{1} H/ δ^{13} C: 5.71/199.3 (^{C=}CH, CH₃^{Ph}/NCN), 3.81/169.4 (CH^{iPr}/^{iPrN}C).

¹¹**B NMR** (128 MHz, 298 K, CD_2Cl_2): $\delta = -10.6 (v_{1/2} \sim 44 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, CD₂Cl₂): δ = -129.8 (m, 4F, *o*-C₆F₅), -159.6 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 2F, *p*-C₆F₅), -165.4 (m, 4F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 5.8].

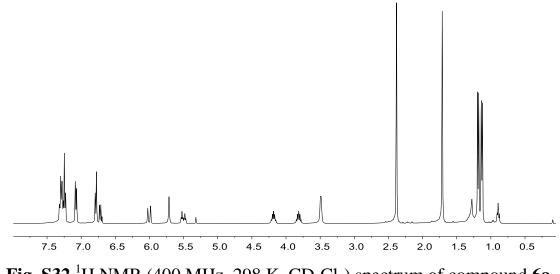
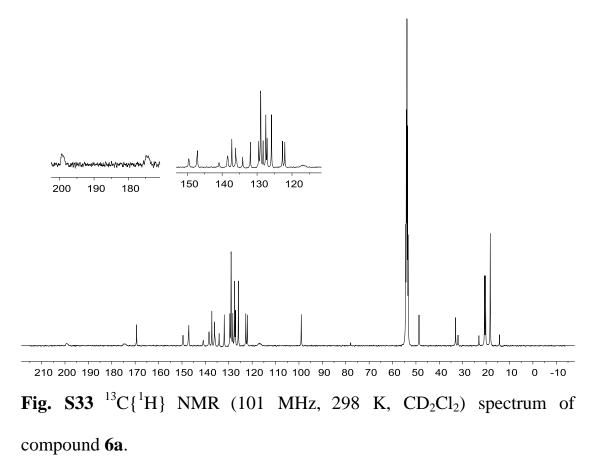
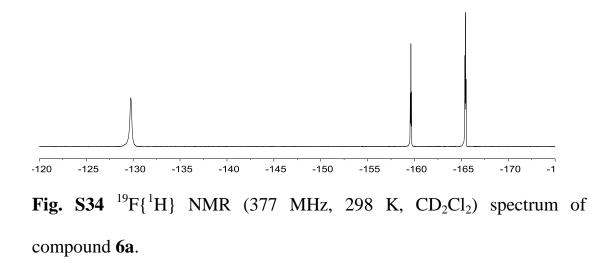




Fig. S32 ¹H NMR (400 MHz, 298 K, CD₂Cl₂) spectrum of compound 6a.

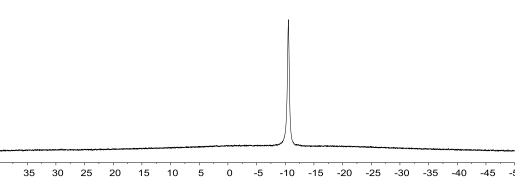


Fig. S35 ¹¹B NMR (128 MHz, 298 K, CD₂Cl₂) spectrum of compound **6a**. X-ray crystal structure analysis of compound **6a**: formula $C_{48}H_{44}BCl_2F_{10}N_3$, M = 934.57, colourless crystal, $0.47 \times 0.45 \times 0.24$ mm, a = 12.158(3), b = 24.328(5), c = 15.731(4) Å, $\alpha = \gamma = 90.000$, $\beta = 99.003(6)$, V = 4595.6(19) Å³, $\rho_{calc} = 1.351$ gcm⁻³, $\mu = 0.219$ mm⁻¹, empirical absorption correction ($0.6706 \le T \le 0.7461$), Z = 4, monoclinic, space group $P2_{1/n}$, $\lambda = 0.71073$ Å, T = 150.2 K, ω and φ scans, 55725 reflections collected ($\pm h$, $\pm k$, \pm), 8079 independent ($R_{int} = 0.0741$) and 6265 observed reflections [$I > 2\sigma(I)$], 585 refined parameters, R = 0.0615, $wR^2 = 0.1762$, max. (min.) residual electron density 1.12 (-0.90) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

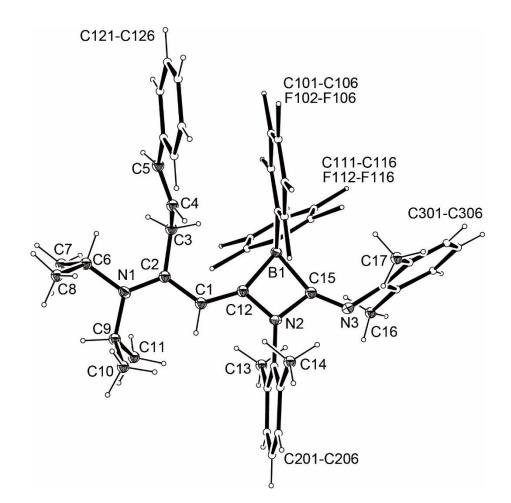
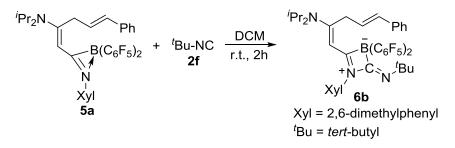
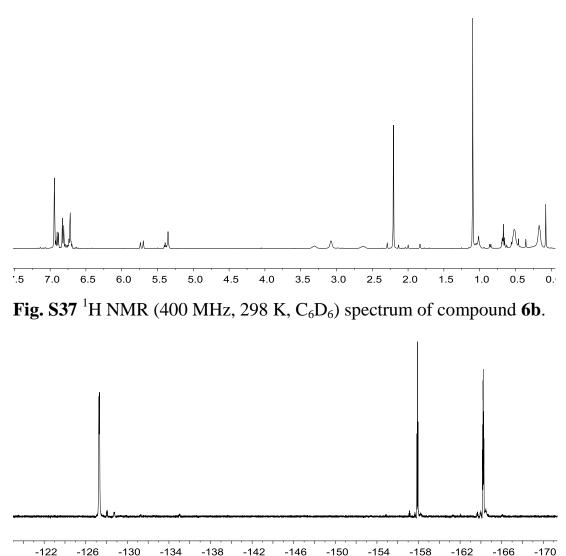



Fig. 36 A view of the molecular structure of compound 6a (thermal ellipsoids are shown at the 30% probability level). Selected bond lengths (Å) and angles (deg): N1-C2 1.331(3), C2-C1 1.412(4), C1-C12 1.372(4), C12-N2 1.367(3), N2-C201 1.444(3), N2-C15 1.427(3), N3-C15 1.263(3), B1-C15 1.689(4), B1-C12 1.668(4), B1-C101 1.628(4), B1-C111 1.632(4); N1-C2-C1 121.9(2), C2-C1-C12 126.3(2), B1-C12-N2 91.4(2), C12-N2-C15 100.5(2), N2-C15-B1 88.51(18), C15-B1-C12 79.55(18); $\sum N1^{CCC} 359.9, \sum N2^{CCC} 359.3$.

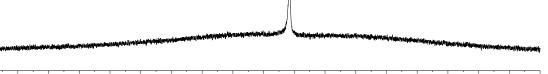
Synthesis of compound 6b

A solution of compounds **5a** (150.1 mg, 0.21 mmol) and **2f** (17.8 mg, 0.21 mmol) in CH₂Cl₂ (5 mL) was stirred at room temperature for 2 h. After the removal of the solvent under vacuum, the obtained residue was washed with *n*-hexane (3×3 ml) and dried in vacuo to give a white solid. Yield: 130.5 mg, 78%.

[Comments: Compound **6b** is not stable in solution. The obvious conversion of compound **6a** to **7** can be observed after 1 hour in solution at room temperure by the in-situ NMR, which prevents the ${}^{13}C{}^{1}H$ NMR and related 2D NMR spectroscopic studies.]


Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound **6b** in CH_2Cl_2 covered with *n*-hexane at -25 °C.

HRMS (ESI): m/z calcd for $C_{43}H_{43}BF_{10}N_3$: 802.3385 [M+H]⁺; found: 802.3391.


¹**H NMR** (400 MHz, 298 K, C₆D₆): δ = 6.92-7.14 (m, 8H, Ph), 5.94 (d, H, ³ J_{HH} = 16.3 Hz, ^{Ph}CH=), 5.59 (dt, 1H, ³ J_{HH} = 16.0 Hz, ³ J_{HH} = 5.1 Hz, ^{CH2}C*H*=), 5.57 (s, 1H, ^{C=}C*H*), 3.53 and 2.85 (each, m, each 1H, C*H*^{iPr}), 3.30 (d, 2H, C*H*₂), 2.42 (s, 6H, C*H*₃^{Ph}), 1.32 (s, 9H, C*H*₃^{tBu}), 0.74, 0.38 (each m, each 6H, C*H*₃^{iPr}).

¹¹**B NMR** (128 MHz, 298 K, C_6D_6): $\delta = -9.2 (v_{1/2} \sim 45 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, C₆D₆): δ = -127.3 (m, 4F, *o*-C₆F₅), -157.9 (t, ${}^{3}J_{FF}$ = 21.0 Hz, 2F, *p*-C₆F₅), -164.2 (m, 4F, *m*-C₆F₅) [Δδ¹⁹F_{*m,p*} = 6.3].

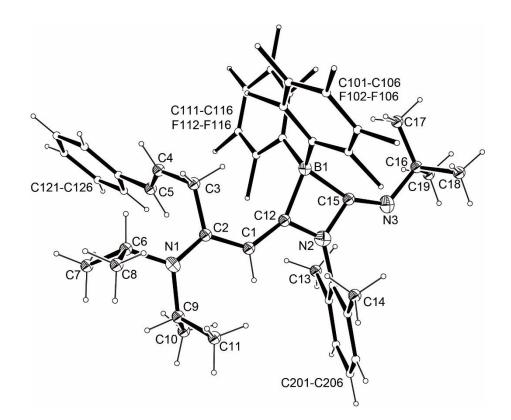
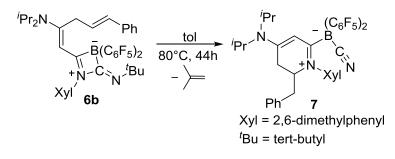


Fig. S38 19 F{ 1 H} NMR (377 MHz, 298 K, C₆D₆) spectrum of compound **6b**.


35 30 15 10 5 -5 -15 -20 -25 -30 -35 0 25 20 0 -10 -40 -45 _! Fig. S39 ¹¹B NMR (128 MHz, 298 K C_6D_6) spectrum of compound 6b.

X-ray crystal structure analysis of compound 6b: formula $C_{46}H_{49}BF_{10}N_3$, M = 844.69, colorless crystal, $0.45 \times 0.44 \times 0.2$ mm, a = 16.808(3), b = 16.731(3), c = 31.076(6) Å, $\alpha = \gamma = 90.000$ °, $\beta = 90.186(4)$ °, V = 8739(3) Å³, $\rho_{calc} = 1.284$ gcm⁻³, $\mu = 0.104$ mm⁻¹, empirical absorption correction ($0.6528 \le T \le 0.7461$), Z = 8, monoclinic, space group C2/c, $\lambda = 0.71073$ Å, T = 150.0 K, ω and φ scans, 42794 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6870 independent ($R_{int} = 0.2369$) and 2639 observed reflections [$I > 2\sigma(I)$], 523 refined parameters, R = 0.0850, $wR^2 = 0.1748$, max. (min.) residual electron density 0.32 (-0.22) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

Fig. S40 A view of the molecular structure of compound **6b** (thermal ellipsoids are shown at the 30% probability level). Selected bond lengths (Å) and angles (deg): N1-C2 1.327(6), C2-C1 1.396(7), C1-C12 1.382(7), C12-N2 1.344(6), N2-C201 1.441(6), N2-C15 1.422(7), N3-C15 1.286(6), B1-C15 1.674(8), B1-C12 1.660(8), B1-C101 1.641(8), B1-C111 1.631(8); N1-C2-C1 124.2(5), C2-C1-C12 127.9(5), B1-C12-N2 92.1(4), C12-N2-C15 100.1(5), N2-C15-B1 88.8(4), C15-B1-C12 79.0(4); $\sum N1^{CCC}$ 360.0, $\sum N2^{CCC}$ 360.0.

Synthesis of compound 7

A solution of compound **6a** (267.3 mg, 0.33 mmol) in toluene (10 mL) was heated at 80 \degree for 44 h. After the removal of the solvent under vacuum, the obtained residue was dissolved in dichloromethane (2 mL) and added dropwise to *n*-hexane (40 mL). The filtrate was collected and concentrated to ca. 10 mL, then kept at -25 \degree for 12 h to give a orange crystalline solid, which was collected by filtration and dried in vacuo. Yield: 167.3 mg, 67%.

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of the isolated compound 7 in CH_2Cl_2 covered with *n*-hexane at -25 °C.

HRMS (ESI): m/z calcd for C₃₉H₃₄BF₁₀N₃Na: 768.2578 [M+Na]⁺; found: 768.2574.

¹**H NMR** (400 MHz, 298 K, CD₂Cl₂): δ = 6.84-7.33 (m, 8H, Ph), 6.11 (s, 1H, CH=), 3.98 (m, 1H, CH^{CH2Ph}), 3.94 and 3.80 (m, 2H, CH^{iPr}), 2.91 (m, 2H, ^{Ph}CH₂), 2.82 (dd, 1H, ²J_{HH} =16.5 Hz, ³J_{HH} = 6.0 Hz) and 2.52 (dd, 1H, $^{2}J_{HH}$ = 16.5 Hz, ³J_{HH} = 6.4 Hz, ^{iPrNC}CH₂), 2.38 and 2.36 (each s, each 3H, CH₃^{Ph}), 1.44 (m, 3H), 1.26 (m, 3H) and 1.10 (m, 6H) (CH₃^{iPr}).

¹³C{¹H} NMR (101 MHz, 298 K, CD₂Cl₂): $\delta = 186.0$ (br, BC), 157.1 (br, ^{iPr2}NC), not observed (B-C=N), 148.2 (dm, ¹J_{FC} = 232.2 Hz, *m*-C₆F₅), 139.6 (dm, ¹J_{FC} = 232.3 Hz, *p*-C₆F₅), 137.2 (dm, ¹J_{FC} = 242.4 Hz, *o*-C₆F₅), 119.4 (brm, *i*-C₆F₅), 140.6, 136.8, 136.64, 136.57, 129.5, 129.4, 129.1 129.0, 128.7, 127.7 (Ph), 101.6 (CH=), 62.3 (CH^{CH2Ph}), 50.8 and 49.2 (each br, CH^{iPr}), 34.7 (^{Ph}CH₂), 29.0 (^{iPrNC}CH₂), 21.2, 20.7 and 20.6 (CH₃^{iPr}), 19.0 and 19.6 (CH₃^{Ph}).

¹H-¹³C GHSQC (400 MHz/101 MHz, 298 K, CD_2Cl_2): $\delta^1H/\delta^{13}C$: 6.11/101.6 (*CH*=), 3.98/62.3 (*CH*^{CH2Ph}), 3.94/49.2 and 3.80/50.8 (*CH*^{iPr}), 2.91/34.7 (^{Ph}*CH*₂), (2.82, 2.52)/29.0 (^{iPrNC}*CH*₂), (2.38, 2.36)/(19.0, 19.6) (*CH*₃^{Ph}), (1.44, 1.26, 1.10)/(21.2, 20.7, 20.6) (*CH*₃^{iPr}).

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): $\delta = -20.3$ ($v_{1/2} \sim 34$ Hz).

¹⁹**F**{¹**H**} **NMR** (377 MHz, 298 K, CDCl₃): $\delta = -127.0$ (m, 4F, *o*-C₆F₅), -158.8 (m, 2F, *p*-C₆F₅), -164.6 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{*m,p*} = 5.8].

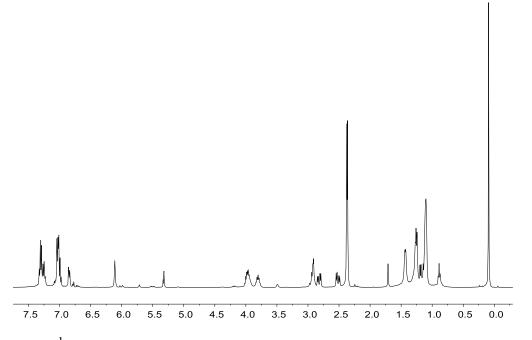
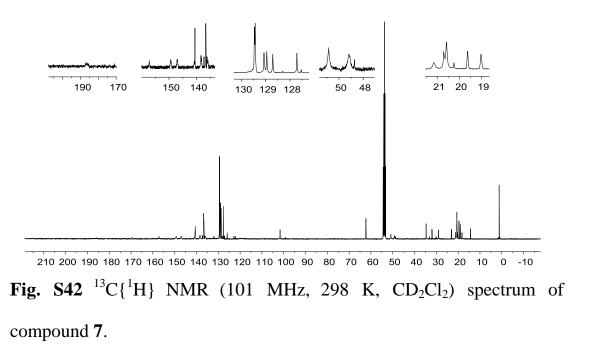
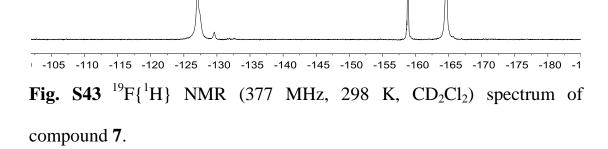




Fig. S41 1 H NMR (400 MHz, 298 K, CD₂Cl₂) spectrum of compound 7.

30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 . -45 35 **Fig. S44** ¹¹B NMR (128 MHz, 298 K, CD₂Cl₂) spectrum of compound **7**. X-ray crystal structure analysis of compound 7: formula $C_{39}H_{34}BF_{10}N_3$, M = 745.50, orange crystal, $0.46 \times 0.45 \times 0.21$ mm, a = 9.2344(8), b =18.7674(16), c = 20.7528(19) Å, $\alpha = \gamma = 90.000$ °, $\beta = 100.808(3)$ °, V =3532.8(5) Å³, $\rho_{calc} = 1.402 \text{ gcm}^{-3}$, $\mu = 0.119 \text{ mm}^{-1}$, empirical absorption correction (0.6442 \leq T \leq 0.7461), Z = 4, monoclinic, space group $P2_{1/c}$, λ = 0.71073 Å, T = 150.0 K, ω and φ scans, 43451 reflections collected (±*h*, $\pm k, \pm l$, 10578 independent ($R_{int} = 0.0948$) and 4573 observed reflections $[I \ge 2\sigma(I)]$, 484 refined parameters, R = 0.0656, $wR^2 = 0.1146$, max. (min.) residual electron density 0.35 (-0.33) e.Å⁻³, all the hydrogen atoms were calculated and refined as riding atoms.

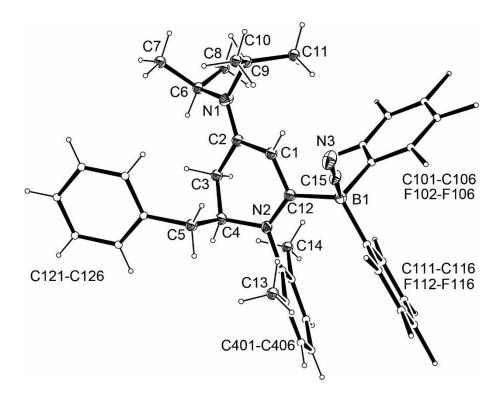


Fig. S45 A view of the molecular structure of compound 7.