Supporting Information

Synthesis, Solid-State, and Solution Characterization of an "In-Cage" Scandium-NOTA Complex

Kelly E. Aldrich,^a Ivan A. Popov,^{a,b} Harrison D. Root,^a Enrique R. Batista,^a,* Samuel M. Greer,^a Stosh A. Kozimor,^a,* Laura M. Lilley,^a Maksim Y. Livshits,^a Veronika Mocko,^a Michael T. Janicke,^a Benjamin W. Stein,^a Ping Yang^{a,*}

^a Los Alamos National Laboratory, Los Alamos, NM, USA

^b Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, USA.

Table of Contents

X-Ray Crystallography
Crystallographic Details of SOLUTION 13
Discussion of the two $[Sc(NOTA)(OOCCH_3)]^{1-}$ Subunits Present Within the Unit Cell
Figure S1. Molecular structure of Sc(NOTA) (top) and [Sc(NOTA)(OOCCH₃)] ^{1–} (bottom). Spacefilling models of the structures (based on VanderWalls radii) are shown for comparison obtained from the single crystal X-ray data
HRMS Analysis
Figure S2. Mass Spectrum for Sc(NOTA) (ToF, positive mode)
MS Discussion
NMR Spectroscopy
General NMR Considerations 20
Figure S3. ¹ H NMR of Na[Sc(NOTA)(OOCCH ₃)] in D ₂ O at 20 °C (pH = 7). Broad peaks indicative of an exchange process
Figure S4. ¹ H NMR of Na[Sc(NOTA)(OOCCH₃)] in DMSO-d ₆ at 20 °C
Figure S5. 45 Sc NMR of Na[Sc(NOTA)(OOCCH ₃)] in D ₂ O at 20 °C
Figure S6. ⁴⁵ Sc NMR of Na[Sc-NOTA-OAc] in D ₂ O at 40 °C. Peak fitting was applied
Figure S7. 45 Sc NMR of Na[Sc-NOTA-OAc] in D ₂ O at 80 °C. Peak fitting was applied
Figure S8. ¹⁷ O NMR spectra of tap water (red) and Na[Sc(NOTA)(OOCCH ₃)] in D ₂ O spiked with H ₂ (¹⁷ O) (green) at 25 °C
Figure S9. ⁴⁵ Sc NMR of Na[Sc(NOTA)(L)] in dmso-d ₆ at 20 °C. (where L = $^{-}OOCCH_3$, DMSO, H ₂ O or a combination of these)

Experimental Approximation of Exchange Process Thermodynamics	28
Table S4. Van't Hoff plot parameters for VT ⁴⁵ Sc NMR species distributions	29
Figure S10. Van't Hoff Plot of VT 45 Sc NMR species distributions in D ₂ O (In(K _{eq}) vs. (1/T))	29
IR Spectroscopy	30
Figure S11. IR spectrum of solid Na[Sc(NOTA)(OOCCH₃)], recorded in transmittance mode	30
Discussion of IR	30
Computational Details	32
Figure S12. Coordination of water molecule to Na[Sc(NOTA)(OOCCH ₃)] (a) to form Na[Sc(NOTA)(OOCCH ₃)(H ₂ O)] (b).	32
Table S5. Comparison of the bond distances and RMSD values of the [Sc(NOTA)(OOCCH ₃) Na[Sc(NOTA)(OOCCH ₃)] and 2H ₂ O*Na[Sc(NOTA)(OOCCH ₃)] complexes to the experime XRD structure.	[)] ^{1–} , ental 33
Figure S13. Acetate-water substitution in the Na[Sc(NOTA)(OOCCH ₃)] complex (a) to form [Sc(NOTA)(OH ₂)] (b).	33
Figure S14. Acetate-water substitution with two water molecules to the Na[Sc(NOTA)(OOCCH ₃)] complex (a) to form [Sc(NOTA)(OH ₂) ₂] (b).	 34
Figure S15. Exchange processes calculated and associated Gibbs free energy change for both the association (a) and exchange mechanisms (b)	36
Discussion of Bulk Water Treatment Using the Cluster Approach	36
Figure S16. Coordination of DMSO molecule to Na[Sc(NOTA)(OOCCH ₃)]	37
Figure S17. Acetate-DMSO substitution with one (a) and two (b) DMSO molecules in the Na[Sc(NOTA)(OOCCH ₃)] complex to form [Sc(NOTA)(DMSO)] (a) and [Sc(NOTA)(DMSO) ₂] ((b)38
Figure S18. Simultaneous addition of DMSO and NaCH₃COO to [Sc(NOTA)] (a) to form Na[Sc(NOTA)(CH₃COO)(DMSO)] (b)	39
References	39

X-Ray Crystallography

Single crystals of C₂₈H₄₈N₆Na₃O₁₉Sc₂ · *n* H₂O were grown by layering a solution containing the Na[Sc-NOTA-OAc] complex and byproduct salts in a MeOH/H₂O solution with acetone and chilling the solution to 10 °C for several days. Crystals were clear and colorless and had a platelike appearance. A suitable crystal was selected and mounted in paratone oil on a nylon loop. The crystal was irradiated on a Bruker D8 Quest diffractometer configured with an CPAD Photon IITM area detector and MoKa ($\lambda = 0.71073$ Å) IµS 3.0 micro sourceTM. The crystal was kept at 100.0 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the XL [3] refinement package using Least Squares minimization. For Solution 1 below, the SQUEEZE or BYPASS function was applied.

Crystallographic Details of SOLUTION 1

The initial structure solution was determined using the Intrinsic Phasing routine in APEX3 software. Refinement of the solution was performed using Olex2¹ software running SHELX Least Squares refinement.² The "SQUEEZE" function³ was applied to the solution to treat a large number of disordered, outersphere waters occupying the void space of the structure.

Crystal Data for C₂₈H₄₈N₆Na₃O₁₉Sc₂ (*M* =931.61 g/mol): monoclinic, space group C2/c (no. 15), *a* = 34.9608(7) Å, *b* = 19.7499(4) Å, *c* = 14.5059(3) Å, β = 107.9050(10)°, *V* = 9530.8(3) Å³, *Z* = 8, *T* = 100(1) K, μ (MoK α) = 0.382 mm⁻¹, *Dcalc* = 1.299 g/cm³, 53239 reflections measured (4.084° ≤ 2 Θ ≤ 55.834°), 11371 unique (*R*_{int} = 0.0451, R_{sigma} = 0.0359) which were used in all calculations. The final *R*₁ was 0.0427 (I > 2 σ (I)) and *wR*₂ was 0.0913 (all data).

Discussion of the two [Sc(NOTA)(OOCCH₃)]^{1–} Subunits Present Within the Unit Cell.

Overlaying the two $[Sc(NOTA)(OOCCH_3)]^{1-}$ subunits present within the unit cell revealed that the Sc–NOTA and Sc–OOCCH₃ bond distances and angles were nearly identical (Figure 1), and only subtle geometric deviations were apparent. More quantitative evaluation showed slight <0.0016 Å differences between Sc1–O_{NOTA} vs. Sc2–O_{NOTA} bond distances, with the only statistically relevant deviation being between Sc1–O5 and Sc2–O13. The Sc1–N_{NOTA} vs. Sc2–N_{NOTA} distances were similarly similar. Slightly more variation was observed for Sc1–O_{OOCCH3} vs. Sc2–O_{OOCCH3} bonds, with deviations of 0.05 and 0.033 Å between the two analogous sets of acetate oxygen atoms, which slightly exceeded the uncertainty of the crystallographic measurement. We suspected that these small differences between the two symmetry inequivalent [Sc(NOTA)(OOCCH₃)]^{1–} fragments were the result of subtle variation in the long range electrostatic interactions imparted by the extended structure of the crystalline material (see below), such as the positions of individual H₂O molecules and Na¹⁺ cations.

Identification code	final_BLS_05-13-22
Empirical formula	$C_{28}H_{70}N_6Na_3O_{30}Sc_2$
Formula weight	1129.79
Temperature/K	100.00
Crystal system	monoclinic
Space group	C2/c
a/Å	34.9608(7)
b/Å	19.7499(4)
c/Å	14.5059(3)
α/°	90
β/°	107.9050(10)
γ/°	90
Volume/Å ³	9530.8(3)
Ζ	8
$\rho_{calc}g/cm^3$	1.575
μ/mm^{-1}	0.414
F(000)	4760.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.06$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.084 to 55.834
Index ranges	$-45 \le h \le 45, -25 \le k \le 19, -18 \le l \le 19$
Reflections collected	53239
Independent reflections	11371 [$R_{int} = 0.0451$, $R_{sigma} = 0.0359$]
Data/restraints/parameters	11371/4/573
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0427, wR_2 = 0.0876$
Final R indexes [all data]	$R_1 = 0.0523, wR_2 = 0.0913$
Largest diff. peak/hole / e Å $^{\text{-3}}$	0.40/-0.43

Table 1 Crystal data and structure refinement for SOLUTION 1.

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for SOLUTION 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Sc1	3614.9(2)	8394.9(2)	891.8(2)	10.27(7)
Sc2	3297.0(2)	5816.3(2)	4993.4(3)	11.61(7)
Nal	3066.7(2)	7023.0(3)	1123.7(5)	14.10(15)
Na2	2686.9(2)	8478.9(4)	1164.9(5)	13.32(15)
Na3	2525.6(2)	10222.8(4)	1747.7(5)	15.52(15)
N1	3590.8(5)	8340.0(8)	-766.4(11)	13.7(3)
N2	4296.3(5)	8259.0(8)	948.1(12)	15.1(3)
N3	3868.9(4)	9458.1(8)	544.7(12)	13.8(3)

N4	3760.1(5)	4909.0(8)	5508.4(13)	19.6(4)
N5	3831.8(5)	6270.1(10)	6272.8(13)	25.2(4)
N6	3874.1(5)	6019.6(10)	4424.8(13)	25.9(4)
01	3052.5(4)	7967.2(6)	120.2(9)	12.4(3)
O2	2580.3(4)	7646.7(6)	-1230.0(9)	14.1(3)
O3	3780.4(4)	7340.1(6)	1161.1(10)	14.9(3)
O4	4256.7(5)	6599.9(7)	1925.9(13)	32.7(4)
05	3218.1(4)	9196.0(6)	1033.2(9)	14.3(3)
06	3173.6(4)	10227.8(7)	1619.8(11)	23.4(3)
O7	3327.2(4)	8021.3(6)	2089.5(9)	14.1(3)
08	3893.7(4)	8583.3(7)	2459.5(10)	16.8(3)
09	2943.5(4)	4920.0(6)	4842.6(9)	14.0(3)
O10	2890.3(4)	3797.3(6)	4932.3(10)	18.2(3)
011	3098.1(4)	5934.9(7)	6252.8(10)	16.1(3)
012	3181.1(5)	6405.6(8)	7707.8(11)	25.4(3)
013	3151.3(4)	5623.5(6)	3460.0(10)	15.8(3)
O14	3143.9(4)	6114.2(7)	2077.0(10)	20.4(3)
015	2649.0(4)	6232.8(6)	4303.1(10)	16.6(3)
016	3180.3(4)	6881.7(7)	4618.5(11)	21.0(3)
O17	2639.2(4)	10586.9(8)	3391.4(11)	22.7(3)
O18	2538.5(4)	9097.0(7)	2338.7(10)	18.2(3)
019	2793.1(5)	9253.1(9)	4354.9(11)	32.3(4)
C1	2915.8(5)	7873.2(8)	-806.5(13)	11.5(3)
C2	3196.3(5)	8058.7(10)	-1376.1(14)	16.7(4)
C3	3918.2(6)	7849.7(10)	-738.8(14)	17.7(4)
C4	4321.0(6)	8060.7(10)	-33.4(14)	17.8(4)
C5	4145.7(6)	7162.7(10)	1570.3(15)	18.4(4)
C6	4457.9(5)	7712.1(10)	1655.4(15)	16.9(4)
C7	4519.7(6)	8898.3(10)	1299.0(15)	17.5(4)
C8	4310.3(5)	9488.1(10)	681.4(15)	16.6(4)
C9	3347.9(6)	9796.2(9)	1280.9(14)	15.4(4)
C10	3758.1(5)	9961.3(9)	1172.4(15)	16.7(4)
C11	3632.6(6)	9588.3(9)	-485.2(14)	16.6(4)
C12	3674.4(6)	9017.9(9)	-1141.9(14)	16.7(4)
C13	3612.5(6)	8303.5(9)	2721.2(14)	15.3(4)
C14	3621.2(7)	8336.7(11)	3758.3(15)	24.6(4)
C15	3089.3(6)	4326.6(9)	5020.5(13)	14.2(4)
C16	3540.1(6)	4257.9(9)	5320.9(15)	18.7(4)
C19	3282.3(6)	6312.0(10)	6975.1(14)	17.9(4)
C20	3644.3(6)	6681.2(11)	6866.1(16)	25.5(5)
C23	3300.9(6)	6002.5(9)	2948.6(14)	16.3(4)
C24	3698.6(6)	6340.8(12)	3470.0(15)	24.5(5)

C27	2799.2(6)	6810.9(9)	4277.3(14)	16.1(4)
C28	2543.4(6)	7404.3(10)	3827.6(15)	21.6(4)
C17A	3879.7(8)	5047.4(13)	6608.6(18)	17.0(5)
C18A	4070.1(8)	5746.3(15)	6850(2)	18.1(6)
C21A	4065.0(9)	6760.6(15)	5817(2)	18.0(5)
C22A	4207.2(9)	6394.4(17)	5064(2)	19.9(6)
C25A	4025.7(8)	5296.0(15)	4268(2)	17.6(5)
C26A	4113.3(8)	4891.4(13)	5190(2)	18.9(5)
C17B	4106(2)	4978(4)	6315(6)	18.0(5)
C18B	3985(3)	5490(5)	6911(7)	18.0(5)
C21B	4211(3)	6482(5)	6190(6)	19.6(16)
C22B	4081(3)	6716(5)	5144(6)	17.5(16)
C25B	4125(3)	5591(5)	4431(7)	18.0(5)
C26B	3939(2)	4908(4)	4538(6)	18.0(5)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for SOLUTION 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
Sc1	9.48(15)	10.01(15)	11.03(16)	-1.31(12)	2.72(12)	-1.65(12)
Sc2	12.46(15)	10.31(15)	12.09(17)	0.45(13)	3.80(13)	-0.37(13)
Na1	17.0(4)	11.0(3)	13.6(4)	0.0(3)	3.5(3)	-1.7(3)
Na2	12.6(3)	12.2(3)	14.9(4)	-1.9(3)	3.8(3)	-0.3(3)
Na3	16.4(4)	14.7(3)	15.0(4)	-1.2(3)	4.2(3)	0.3(3)
N1	14.4(7)	14.3(7)	13.3(8)	-1.8(6)	5.5(6)	-4.2(6)
N2	14.4(7)	13.8(7)	16.2(8)	-0.4(6)	3.6(6)	-1.2(6)
N3	12.7(7)	12.6(7)	16.6(8)	-1.3(6)	5.3(6)	-1.9(6)
N4	15.4(8)	13.9(8)	26.3(9)	2.8(7)	1.6(7)	0.1(6)
N5	18.4(8)	36.3(10)	24.0(10)	-15.5(8)	11.2(8)	-9.7(8)
N6	17.7(8)	43.6(11)	15.1(9)	5.8(8)	3.3(7)	-7.6(8)
01	12.6(6)	12.9(6)	11.2(6)	-0.6(5)	2.8(5)	-1.8(5)
O2	13.2(6)	15.6(6)	12.5(6)	-1.0(5)	2.3(5)	-2.7(5)
O3	11.7(6)	13.2(6)	18.6(7)	-1.5(5)	3.0(5)	-0.8(5)
O4	21.3(7)	16.4(7)	51.1(11)	10.3(7)	-2.5(7)	1.2(6)
05	13.7(6)	11.2(6)	18.0(7)	-2.8(5)	5.0(5)	-1.7(5)
06	22.2(7)	17.9(7)	32.7(9)	-11.5(6)	12.5(7)	-2.7(6)
O7	14.3(6)	13.5(6)	13.1(6)	-1.9(5)	2.1(5)	-1.1(5)
08	13.9(6)	19.8(7)	15.9(7)	-3.0(5)	3.7(5)	-3.4(5)
09	16.1(6)	10.2(6)	13.9(6)	2.2(5)	1.9(5)	-0.5(5)
O10	21.5(7)	12.3(6)	15.8(7)	2.9(5)	-1.7(6)	-4.0(5)
O11	17.7(6)	17.0(6)	14.3(7)	-1.3(5)	5.8(5)	-1.5(5)

012	29.4(8)	30.6(8)	19.5(8)	-9.6(6)	12.5(6)	-6.5(7)
O13	19.7(6)	15.1(6)	13.7(7)	1.4(5)	6.4(5)	-2.4(5)
O14	25.7(7)	20.4(7)	14.5(7)	5.0(6)	5.2(6)	-2.0(6)
015	17.7(6)	12.3(6)	19.7(7)	0.0(5)	5.5(6)	0.0(5)
O16	17.4(7)	14.1(6)	28.6(8)	3.6(6)	2.8(6)	-0.6(5)
017	21.1(7)	24.0(8)	20.0(8)	-3.0(6)	1.9(6)	1.9(6)
O18	21.3(7)	19.0(7)	15.6(7)	-2.3(6)	7.4(6)	-0.4(6)
O19	41.0(10)	39.8(10)	18.3(8)	-4.3(7)	12.4(7)	-19.1(8)
C1	13.3(8)	7.0(7)	13.7(9)	0.1(6)	3.6(7)	0.1(6)
C2	15.2(9)	22.5(10)	12.0(9)	-2.1(7)	3.7(7)	-5.2(8)
C3	19.8(9)	18.1(9)	16.7(9)	-2.4(8)	8.0(8)	-0.4(8)
C4	14.9(9)	21.0(10)	19.1(10)	-2.0(8)	7.3(8)	2.0(7)
C5	16.8(9)	16.6(9)	20.5(10)	-1.5(8)	3.7(8)	0.0(7)
C6	12.7(8)	16.6(9)	19.4(10)	1.0(7)	2.1(8)	1.3(7)
C7	12.4(8)	18.5(9)	20.9(10)	-3.5(8)	3.9(8)	-4.8(7)
C8	11.9(8)	17.4(9)	20.7(10)	-0.2(8)	5.5(8)	-3.4(7)
C9	16.7(9)	13.9(8)	14.6(9)	-2.7(7)	3.4(7)	-0.8(7)
C10	14.9(8)	13.3(9)	21.9(10)	-4.9(7)	5.6(8)	-3.0(7)
C11	16.4(9)	15.2(9)	17.8(10)	2.0(7)	4.7(8)	-1.1(7)
C12	17.8(9)	18.3(9)	14.6(9)	1.9(7)	5.9(8)	-5.2(7)
C13	17.7(9)	13.6(8)	14.0(9)	-1.6(7)	4.0(7)	1.2(7)
C14	29.2(11)	28.2(11)	15.9(10)	-5.9(8)	6.2(9)	-8.3(9)
C15	19.6(9)	15.0(9)	6.3(8)	1.7(7)	1.5(7)	0.2(7)
C16	18.6(9)	12.3(9)	24.3(11)	0.9(8)	5.3(8)	0.6(7)
C19	20.6(9)	15.4(9)	17.8(10)	-1.4(7)	6.1(8)	1.9(8)
C20	26.4(11)	29.4(11)	24.9(11)	-15.1(9)	14.2(9)	-9.0(9)
C23	20.1(9)	14.4(9)	15.4(9)	0.8(7)	6.8(8)	1.0(7)
C24	25.1(10)	33.1(12)	16.0(10)	2.7(9)	7.3(9)	-11.7(9)
C27	20.1(9)	13.2(8)	14.5(9)	-0.2(7)	4.4(8)	1.6(7)
C28	25.0(10)	14.4(9)	22.9(11)	1.0(8)	3.8(9)	3.5(8)
C17A	19.1(12)	16.4(12)	13.3(12)	1.3(10)	1.7(10)	-0.2(10)
C18A	12.9(12)	23.4(14)	15.6(13)	-4.1(11)	0.8(10)	-2.0(11)
C21A	16.8(11)	17.6(12)	19.3(13)	-0.9(10)	4.9(10)	-4.3(9)
C22A	21.1(14)	19.6(15)	21.8(15)	-3.1(12)	10.4(12)	-5.9(12)
C25A	16.3(13)	18.6(13)	19.8(14)	-4.6(11)	8.5(11)	1.0(11)
C26A	16.2(12)	17.9(12)	23.5(15)	-3.6(11)	7.3(11)	1.8(10)
C17B	16.8(11)	17.6(12)	19.3(13)	-0.9(10)	4.9(10)	-4.3(9)
C18B	16.8(11)	17.6(12)	19.3(13)	-0.9(10)	4.9(10)	-4.3(9)
C21B	21(4)	20(4)	17(4)	-3(3)	6(3)	-5(3)
C22B	20(4)	16(4)	14(4)	-5(3)	2(3)	-14(3)
C25B	16.8(11)	17.6(12)	19.3(13)	-0.9(10)	4.9(10)	-4.3(9)
C26B	16.8(11)	17.6(12)	19.3(13)	-0.9(10)	4.9(10)	-4.3(9)

Table 4 Bond Lengths for SOLUTION 1.

Atom Atom		Length/Å	Aton	1 Atom	Length/Å
Sc1	N1	2.3834(16)	N4	C26A	1.446(3)
Sc1	N2	2.3738(16)	N4	C17B	1.407(8)
Sc1	N3	2.3932(15)	N4	C26B	1.707(8)
Sc1	01	2.1163(13)	N5	C20	1.475(3)
Sc1	O3	2.1652(13)	N5	C18A	1.427(3)
Sc1	05	2.1551(13)	N5	C21A	1.540(3)
Sc1	O7	2.3765(13)	N5	C18B	1.792(10)
Sc1	08	2.2129(14)	N5	C21B	1.431(8)
Sc2	N4	2.3762(16)	N6	C24	1.475(3)
Sc2	N5	2.3684(18)	N6	C22A	1.449(3)
Sc2	N6	2.4364(17)	N6	C25A	1.565(3)
Sc2	09	2.1314(13)	N6	C22B	1.743(8)
Sc2	O11	2.1580(13)	N6	C25B	1.219(9)
Sc2	O13	2.1576(14)	01	C1	1.294(2)
Sc2	O15	2.3275(13)	O2	C1	1.229(2)
Sc2	O16	2.1802(14)	03	C5	1.281(2)
Nal	01	2.3569(14)	O4	C5	1.237(2)
Nal	$O2^1$	2.4041(14)	05	C9	1.281(2)
Nal	O3	2.5567(14)	06	C9	1.234(2)
Nal	O7	2.4281(14)	O 7	C13	1.258(2)
Nal	O10 ²	2.3099(15)	08	C13	1.283(2)
Na1	O14	2.2309(15)	09	C15	1.272(2)
Nal	C15 ²	3.1223(19)	O10	C15	1.240(2)
Na2	01	2.4782(14)	011	C19	1.285(2)
Na2	$O2^1$	2.4244(14)	012	C19	1.233(2)
Na2	05	2.3894(14)	013	C23	1.274(2)
Na2	O7	2.4042(14)	014	C23	1.234(2)
Na2	O10 ³	2.2422(15)	015	C27	1.262(2)
Na2	O18	2.2808(15)	016	C27	1.278(2)
Na3	06	2.3294(15)	C1	C2	1.509(2)
Na3	O9 ³	2.4583(15)	C3	C4	1.522(3)
Na3	O13 ³	2.4245(15)	C5	C6	1.517(3)
Na3	O15 ³	2.4704(15)	C7	C8	1.514(3)
Na3	O17	2.4036(17)	C9	C10	1.525(3)
Na3	O18	2.3785(16)	C11	C12	1.511(3)
N1	C2	1.498(2)	C13	C14	1.497(3)
N1	C3	1.490(2)	C15	C16	1.507(3)
N1	C12	1.508(2)	C19	C20	1.510(3)

C4	1.504(2)	C23 C24	1.518(3)
C6	1.477(2)	C27 C28	1.497(3)
C7	1.490(2)	C17AC18A	1.526(4)
C8	1.495(2)	C21AC22A	1.516(4)
C10	1.478(2)	C25A C26A	1.507(4)
C11	1.491(2)	C17B C18B	1.475(12)
C16	1.480(2)	C21B C22B	1.515(12)
C17A	1.545(3)	C25B C26B	1.525(11)
	C4 C6 C7 C8 C10 C11 C16 C17A	C41.504(2)C61.477(2)C71.490(2)C81.495(2)C101.478(2)C111.491(2)C161.480(2)C17A1.545(3)	C41.504(2)C23C24C61.477(2)C27C28C71.490(2)C17A C18AC81.495(2)C21A C22AC101.478(2)C25A C26AC111.491(2)C17B C18BC161.480(2)C21B C22BC17A1.545(3)C25B C26B

¹1/2-X,3/2-Y,-Z; ²+X,1-Y,-1/2+Z; ³1/2-X,1/2+Y,1/2-Z

Bond Angles for SOLUTION 1.

Aton	n Aton	n Atom	Angle/°	Atom Atom	Atom	Angle/°
N1	Sc1	N3	74.20(5)	C11 N3	C8	110.96(14)
N2	Sc1	N1	75.71(5)	C16 N4	Sc2	109.40(11)
N2	Sc1	N3	70.91(5)	C16 N4	C17A	107.69(16)
N2	Sc1	O7	125.84(5)	C16 N4	C26B	98.6(3)
01	Sc1	N1	73.10(5)	C17AN4	Sc2	97.65(12)
01	Sc1	N2	137.09(5)	C26AN4	Sc2	118.94(14)
01	Sc1	N3	125.69(5)	C26AN4	C16	111.53(17)
01	Sc1	O3	82.23(5)	C26AN4	C17A	110.37(18)
01	Sc1	05	79.79(5)	C17B N4	Sc2	121.1(3)
01	Sc1	O7	74.31(5)	C17B N4	C16	120.2(3)
01	Sc1	08	130.90(5)	C17B N4	C26B	104.3(4)
O3	Sc1	N1	93.60(5)	C26B N4	Sc2	97.4(3)
O3	Sc1	N2	71.06(5)	C20 N5	Sc2	106.28(12)
O3	Sc1	N3	141.85(5)	C20 N5	C21A	107.03(18)
O3	Sc1	O7	73.69(5)	C20 N5	C18B	106.7(3)
O3	Sc1	08	88.14(5)	C18AN5	Sc2	111.30(15)
05	Sc1	N1	107.78(5)	C18AN5	C20	109.90(19)
05	Sc1	N2	138.44(5)	C18AN5	C21A	114.7(2)
05	Sc1	N3	70.56(5)	C21AN5	Sc2	107.25(15)
05	Sc1	O3	146.44(5)	C18B N5	Sc2	96.8(3)
05	Sc1	O7	74.27(5)	C21B N5	Sc2	125.0(4)
05	Sc1	08	82.63(5)	C21BN5	C20	118.5(4)
O7	Sc1	N1	146.32(5)	C21BN5	C18B	99.1(5)
O7	Sc1	N3	133.95(5)	C24 N6	Sc2	103.89(12)
08	Sc1	N1	155.85(5)	C24 N6	C25A	108.52(18)
08	Sc1	N2	82.15(5)	C24 N6	C22B	101.5(3)
08	Sc1	N3	89.65(5)	C22AN6	Sc2	116.97(16)
08	Sc1	07	56.82(5)	C22AN6	C24	113.70(19)
N4	Sc2	N6	71.08(6)	C22AN6	C25A	108.6(2)

N5	Sc2	N4	75.03(6)	C25A	N6	Sc2	104.57(14)
N5	Sc2	N6	70.52(6)	C22E	8 N6	Sc2	99.3(3)
09	Sc2	N4	73.95(5)	C25E	8 N6	Sc2	123.6(4)
09	Sc2	N5	133.46(6)	C25E	8 N6	C24	113.4(5)
09	Sc2	N6	128.07(6)	C25E	8 N6	C22B	112.3(6)
09	Sc2	O11	81.34(5)	Sc1	01	Nal	98.59(5)
09	Sc2	013	78.58(5)	Sc1	01	Na2	94.81(5)
09	Sc2	015	78.01(5)	Na1	01	Na2	82.06(5)
09	Sc2	O16	135.87(5)	C1	01	Sc1	126.36(11)
011	Sc2	N4	100.46(6)	C1	01	Nal	117.31(11)
011	Sc2	N5	71.20(5)	C1	01	Na2	126.77(11)
011	Sc2	N6	141.69(6)	Na1 ¹	O2	Na2 ¹	82.24(4)
011	Sc2	015	78.54(5)	C1	O2	Na1 ¹	129.90(12)
011	Sc2	O16	91.26(5)	C1	O2	Na2 ¹	129.37(12)
013	Sc2	N4	96.50(6)	Sc1	03	Nal	91.55(5)
013	Sc2	N5	138.93(6)	C5	03	Sc1	121.32(12)
013	Sc2	N6	68.76(6)	C5	03	Nal	140.40(12)
013	Sc2	011	148.91(5)	Sc1	05	Na2	96.38(5)
013	Sc2	015	74.26(5)	C9	05	Sc1	121.55(11)
013	Sc2	O16	86.92(5)	C9	05	Na2	138.02(12)
015	Sc2	N4	151.73(5)	C9	06	Na3	129.80(13)
015	Sc2	N5	129.26(6)	Sc1	O7	Nal	89.90(5)
015	Sc2	N6	126.44(6)	Sc1	O7	Na2	90.36(5)
016	Sc2	N4	149.70(6)	Na2	O7	Nal	82.16(5)
016	Sc2	N5	82.66(6)	C13	O7	Sc1	88.64(11)
016	Sc2	N6	82.38(6)	C13	O7	Nal	148.50(12)
016	Sc2	015	57.91(5)	C13	O7	Na2	129.31(12)
01	Na1	$O2^1$	89.04(5)	C13	08	Sc1	95.52(11)
01	Na1	03	69.78(5)	Sc2	09	Na3 ⁴	95.32(5)
01	Na1	07	69.31(5)	C15	09	Sc2	124.10(12)
01	Nal	C15 ²	110.98(5)	C15	09	Na3 ⁴	121.63(11)
$O2^1$	Nal	O3	149.69(5)	Na2 ⁴	O10	Na1 ⁵	108.02(6)
$O2^1$	Nal	07	86.33(5)	C15	O10	Na1 ⁵	120.12(12)
$O2^1$	Na1	C15 ²	115.92(5)	C15	O10	Na2 ⁴	131.57(12)
03	Nal	C15 ²	92.39(5)	C19	011	Sc2	122.80(12)
O7	Nal	O3	66.32(4)	Sc2	013	Na3 ⁴	95.62(5)
O7	Nal	C15 ²	157.64(5)	C23	013	Sc2	119.18(12)
O10 ²	Na1	01	98.21(5)	C23	013	Na3 ⁴	132.78(12)
O10 ²	Na1	O2 ¹	101.44(5)	C23	O14	Nal	135.25(13)
O10 ²	Na1	03	102.82(5)	Sc2	015	Na3 ⁴	90.19(5)
O10 ²	Na1	07	165.39(6)	C27	015	Sc2	88.49(11)
O10 ²	Na1	C15 ²	20.09(5)	C27	015	Na3 ⁴	137.58(12)

014	Na1	01	174.27(6)	C27	016	Sc2	94.82(11)
O14	Na1	O2 ¹	96.63(5)	Na2	O18	Na3	102.40(6)
014	Na1	03	104.64(5)	01	C1	C2	116.07(15)
014	Na1	O 7	110.07(6)	02	C1	01	124.20(16)
014	Na1	O10 ²	81.55(5)	02	C1	C2	119.73(16)
014	Na1	C15 ²	67.27(5)	N1	C2	C1	113.72(15)
O21	Na2	01	85.83(5)	N1	C3	C4	112.61(15)
05	Na2	01	68.48(5)	N2	C4	C3	113.39(15)
05	Na2	O2 ¹	149.87(5)	03	C5	C6	115.61(16)
05	Na2	07	69.77(5)	04	C5	03	125.41(18)
O7	Na2	01	67.74(5)	04	C5	C6	118.91(17)
O 7	Na2	O2 ¹	86.41(5)	N2	C6	C5	110.76(15)
O10 ³	Na2	01	101.60(5)	N2	C7	C8	110.03(15)
O10 ³	Na2	O2 ¹	90.65(5)	N3	C8	C7	109.86(15)
O10 ³	Na2	05	109.21(6)	05	C9	C10	115.62(16)
O10 ³	Na2	07	169.10(6)	06	C9	05	125.11(17)
O10 ³	Na2	O18	91.03(6)	06	C9	C10	119.23(16)
O18	Na2	01	162.40(6)	N3	C10	C9	110.65(15)
O18	Na2	O2 ¹	106.43(5)	N3	C11	C12	111.84(15)
O18	Na2	O5	95.93(5)	N1	C12	C11	111.55(15)
O18	Na2	07	99.86(5)	07	C13	08	118.90(17)
06	Na3	O9 ³	108.10(6)	07	C13	C14	121.21(17)
06	Na3	O13 ³	157.63(6)	08	C13	C14	119.86(17)
06	Na3	O15 ³	90.53(5)	09	C15	Na1 ⁵	144.94(13)
06	Na3	O17	102.10(6)	09	C15	C16	117.38(16)
06	Na3	O18	96.98(6)	010	C15	Na1 ⁵	39.79(9)
O9 ³	Na3	O15 ³	69.54(5)	010	C15	09	125.34(17)
O13 ³	Na3	O9 ³	67.59(5)	010	C15	C16	117.23(16)
O13 ³	Na3	O15 ³	67.25(5)	C16	C15	Na1 ⁵	87.93(11)
017	Na3	O9 ³	149.64(6)	N4	C16	C15	114.41(15)
O17	Na3	O13 ³	83.28(5)	011	C19	C20	114.87(17)
O17	Na3	O15 ³	107.74(6)	012	C19	011	125.78(18)
O18	Na3	O9 ³	92.52(5)	012	C19	C20	119.31(18)
O18	Na3	O13 ³	105.05(5)	N5	C20	C19	109.39(16)
O18	Na3	O15 ³	161.98(6)	013	C23	C24	116.46(17)
O18	Na3	O17	86.74(6)	014	C23	013	124.67(18)
C2	N1	Sc1	110.69(11)	014	C23	C24	118.86(17)
C2	N1	C12	111.20(15)	N6	C24	C23	109.36(16)
C3	N1	Sc1	102.35(11)	015	C27	016	118.75(17)
C3	N1	C2	109.58(14)	015	C27	C28	121.53(17)
C3	N1	C12	110.74(14)	016	C27	C28	119.68(17)
C12	N1	Sc1	111.94(11)	C18A	AC17A	N4	111.0(2)

C4	N2	Sc1	110.24(11)	N5 C18AC17A	112.7(2)
C6	N2	Sc1	105.79(11)	C22AC21AN5	110.1(2)
C6	N2	C4	110.24(15)	N6 C22AC21A	109.2(2)
C6	N2	C7	109.51(15)	C26A C25A N6	109.9(2)
C7	N2	Sc1	109.34(11)	N4 C26A C25A	108.1(2)
C7	N2	C4	111.56(15)	N4 C17B C18B	103.0(6)
C8	N3	Sc1	116.19(11)	C17B C18B N5	112.3(7)
C10	N3	Sc1	106.01(11)	N5 C21B C22B	99.9(7)
C10	N3	C8	110.30(14)	C21B C22B N6	107.5(6)
C10	N3	C11	109.40(15)	N6 C25B C26B	106.5(7)
C11	N3	Sc1	103.59(10)	C25B C26B N4	111.1(6)

¹1/2-X,3/2-Y,-Z; ²+X,1-Y,-1/2+Z; ³1/2-X,1/2+Y,1/2-Z; ⁴1/2-X,-1/2+Y,1/2-Z; ⁵+X,1-Y,1/2+Z

Torsion Angles for SOLUTION 1.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
Sc1	N1	C2	C1	-0.68(19)	Na3	³ O15	C27	C28	87.6(2)
Sc1	N1	C3	C4	-55.46(16)	N1	C3	C4	N2	48.3(2)
Sc1	N1	C12	C11	-16.53(18)	N2	C7	C8	N3	46.7(2)
Sc1	N2	C4	C3	-12.54(19)	N3	C11	C12	N1	51.1(2)
Sc1	N2	C6	C5	38.12(17)	N4	C17A	AC18/	A N 5	51.2(3)
Sc1	N2	C7	C8	-54.21(17)	N4	C17E	B C18E	3 N 5	-58.2(7)
Sc1	N3	C8	C7	-17.17(19)	N5	C21A	AC22A	AN6	48.6(3)
Sc1	N3	C10	C9	-35.94(17)	N5	C21E	B C22E	3 N6	-61.0(7)
Sc1	N3	C11	C12	-56.74(16)	N6	C25A	A C26A	N4	53.2(3)
Sc1	01	C1	02	_ 177.05(13)	N6	C25E	B C26E	3 N4	-52.6(8)
Sc1	01	C1	C2	3.1(2)	01	C1	C2	N1	-1.2(2)
Sc1	O3	C5	04	164.55(17)	O2	C1	C2	N1	178.89(16)
Sc1	03	C5	C6	-12.3(2)	O3	C5	C6	N2	-20.6(2)
Sc1	05	C9	06	_ 159.96(16)	O4	C5	C6	N2	162.26(19)
Sc1	05	C9	C10	17.7(2)	05	C9	C10	N3	16.2(2)
Sc1	07	C13	08	-3.51(17)	06	С9	C10	N3	- 166.06(17)
Sc1	07	C13	C14	174.46(17)	09	C15	C16	N4	8.5(3)
Sc1	08	C13	07	3.78(18)	010	C15	C16	N4	_ 174.13(17)
Sc1	08	C13	C14	_ 174.21(16)	011	C19	C20	N5	-31.1(3)
Sc2	N4	C16	C15	-9.5(2)	O12	C19	C20	N5	151.04(19)
Sc2	N4	C17A	C18A	-60.86(19)	013	C23	C24	N6	13.7(3)
Sc2	N4	C26A	C25A	-23.6(3)	014	C23	C24	N6	_ 167.00(18)

Sc2	N4	C17B	C18B	27.5(7)	C2	N1	C3	C4	-
Sc2	N4	C26B	C25B	59.3(6)	C2	N1	C12	C11	107.86(17)
Sc2	N5	C20	C19	41.4(2)	C3	N1	C2	C1	111.47(17)
Sc2	N5	C18A	C17A	-10.0(3)	C3	N1	C12	C11	- 130.05(16)
Sc2	N5	C21A	C22A	-56.7(3)	C4	N2	C6	C5	-81.04(18)
Sc2	N5	C18B	C17B	59.7(6)	C4	N2	C7	C8	67.98(19)
Sc2	N5	C21B	C22B	31.3(8)	C6	N2	C4	C3	103.88(18)
Sc2	N6	C24	C23	-39.14(19)	C6	N2	C7	C8	_ 169.70(15)
Sc2	N6	C22A	C21A	-17.4(3)	C7	N2	C4	C3	- 134.21(17)
Sc2	N6	C25A	C26A	-55.9(2)	C7	N2	C6	C5	155.85(15)
Sc2	N6	C22B	C21B	64.1(7)	C8	N3	C10	C9	- 162.51(15)
Sc2	N6	C25B	C26B	17.4(9)	C8	N3	C11	C12	68.63(19)
Sc2	09	C15	Na1 ¹	129.52(17)	C10	N3	C8	C7	103.48(18)
Sc2	09	C15	O10	179.48(14)	C10	N3	C11	C12	_ 169.45(15)
Sc2	09	C15	C16	-2.3(2)	C11	N3	C8	C7	-135.13(16)
Sc2	011	C19	012	179.16(16)	C11	N3	C10	C9	75.17(19)
Sc2	011	C19	C20	1.4(2)	C12	N1	C2	C1	_ 125.76(16)
Sc2	013	C23	O14	152.57(16)	C12	N1	C3	C4	64.0(2)
Sc2	013	C23	C24	26.7(2)	C16	N4	C17A	C18A	- 174.09(18)
Sc2	015	5C27	016	-1.61(18)	C16	N4	C26A	C25A	105.2(2)
Sc2	015	5C27	C28	176.24(17)	C16	N4	C17B	C18B	-115.5(5)
Sc2	016	C27	015	1.73(19)	C16	N4	C26B	C25B	170.3(6)
Sc2	016	5C27	C28	176.16(16	-)	C20	N5	C18A	C17A	107.4(2)
Na1	01	C1	02	56.9(2)	C20	N5	C21A	C22A	-170.4(2)
Na1	01	C1	C2		-)	C20	N5	C18B	C17B	169.0(6)
Na1 ²	² O2	C1	01	49.5(2)	C20	N5	C21B	C22B	-109.1(6)
Na1 ²	² O2	C1	C2	130.62(15	-)	C24	N6	C22A	C21A	103.8(3)
Nal	03	C5	O4	22.8(3)	C24	N6	C25A	C26A	_ 166.31(19)
Nal	03	C5	C6	154.08(14)	C24	N6	C22B	C21B	170.4(6)
Nal	O 7	C13	08	84.1(3)	C24	N6	C25B	C26B	-109.6(6)
Na1	O 7	C13	C14	-98.0(3)	C17A	N4	C16	C15	95.6(2)

Na1 ¹ O10C15	09	- 135.77(16)	C17AN4	C26AC25A	-135.2(2)
Na1 ¹ O10C15	C16	47.1(2)	C18A N5	C20 C19	-79.1(2)
Na1 O14C23	O13	138.94(16)	C18A N5	C21AC22A	67.4(3)
Na1 O14C23	C24	-40.3(3)	C21AN5	C20 C19	155.8(2)
Na1 ¹ C15 C16	N4	- 146.18(15)	C21AN5	C18AC17A	-132.0(2)
Na2 O1 C1	O2	-44.2(2)	C22AN6	C24 C23	-167.4(2)
Na2 O1 C1	C2	135.92(13)	C22AN6	C25AC26A	69.7(3)
Na2 ² O2 C1	O1	-67.8(2)	C25AN6	C24 C23	71.7(2)
Na2 ² O2 C1	C2	112.10(17)	C25AN6	C22AC21A	-135.3(2)
Na2 O5 C9	06	-8.6(3)	C26AN4	C16 C15	- 143.19(19)
Na2 O5 C9	C10	169.02(13)	C26A N4	C17AC18A	63.9(2)
Na2 O7 C13	08	-92.85(19)	C17B N4	C16 C15	137.4(4)
Na2 O7 C13	C14	85.1(2)	C17B N4	C26B C25B	-65.5(7)
Na2 ³ O10C15	Na1 ¹	172.9(2)	C18B N5	C20 C19	-61.0(4)
Na2 ³ O10C15	09	37.2(3)	C18B N5	C21B C22B	136.2(6)
Na2 ³ O10C15	C16	- 140.02(15)	C21B N5	C20 C19	-171.5(5)
Na3 O6 C9	O5	-9.8(3)	C21B N5	C18B C17B	-67.5(7)
Na3 O6 C9	C10	172.61(13)	C22B N6	C24 C23	-141.8(4)
Na3 ³ O9 C15	Na1 ¹	- 107.21(19)	C22B N6	C25B C26B	136.1(6)
Na3 ³ O9 C15	O10	-56.2(2)	C25B N6	C24 C23	97.6(5)
Na3 ³ O9 C15	C16	120.96(15)	C25B N6	C22B C21B	-68.2(8)
Na3 ³ O13C23	014	-20.5(3)	C26B N4	C16 C15	-110.5(3)
Na3 ³ O13C23	C24	158.73(14)	C26B N4	C17B C18B	135.4(6)
Na3 ³ O15C27	O16	-90.2(2)			

¹+X,1-Y,1/2+Z; ²1/2-X,3/2-Y,-Z; ³1/2-X,-1/2+Y,1/2-Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for SOLUTION 1.

Atom	x	У	Z	U(eq)
H2A	3247.27	7650.54	-1716.9	20
H2B	3062.58	8397.66	-1873.65	20
H3A	3945.35	7809.21	-1396.09	21
H3B	3843.94	7398.9	-548.96	21
H4A	4513.05	7680.7	44.27	21
H4B	4427.75	8447.87	-312.08	21
H6A	4539.31	7901.45	2319.39	20
H6B	4699.21	7514.45	1538.78	20
H7A	4797.7	8858.77	1267.43	21

H7B	4533.77	8977.97	1982.45	21
H8A	4421.45	9919.49	999.94	20
H8B	4357.63	9470.51	43.16	20
H10A	3750.95	10418.51	887.75	20
H10B	3963.46	9962.73	1818.56	20
H11A	3726.06	10015.34	-701.85	20
H11B	3345.5	9644.29	-535.13	20
H12A	3484.52	9091.51	-1798.41	20
H12B	3950.36	9019.14	-1192.89	20
H14A	3898.41	8282.13	4180.07	37
H14B	3453.87	7973.73	3888.96	37
H14C	3517.13	8776.12	3885	37
H16A	3628.18	3978.1	5915.23	22
H16B	3614.5	4013.52	4805.15	22
H20A	3560.99	7125.1	6551.3	31
H20B	3840.66	6762.6	7512.35	31
H24A	3885.42	6294.46	3080.88	29
H24B	3655.3	6829.36	3554.11	29
H28A	2643.37	7811.37	4212.68	32
H28B	2264.95	7319.35	3809.09	32
H28C	2554.36	7470.75	3166.74	32
H17C	3638.07	5018.94	6826.19	20
H17D	4072.61	4697.69	6959.49	20
H18C	4109.48	5845.19	7542.42	22
H18D	4337.83	5743.29	6750.86	22
H21A	3889.24	7143.65	5510.49	22
H21B	4299.37	6945.27	6328.36	22
H22A	4309.82	6725.85	4685.56	24
H22B	4428.36	6080.06	5387.17	24
H25A	3818.14	5062.38	3742.32	21
H25B	4272.46	5333.77	4072.23	21
H26A	4178.98	4417.83	5072.52	23
H26B	4345.95	5088	5692.94	23
H17E	4337.71	5137.62	6116.85	22
H17F	4177.15	4544.76	6668.11	22
H18E	4212.91	5578.84	7501.09	22
H18F	3759.75	5309.08	7116.81	22
H21C	4405.04	6102.61	6298.6	24
H21D	4329.37	6856.53	6641.59	24
H22C	4314.3	6891.75	4968.88	21
H22D	3878.64	7081.84	5048.38	21
H25C	4372.75	5667.54	4979.24	22

H25D	4195.53	5605.6	3819.94	22
H26C	4143.53	4547.94	4622.57	22
H26D	3716.17	4808.86	3941.26	22
H18A	2272(7)	8947(18)	2310(30)	80
H17A	2379(7)	10776(17)	3340(30)	80
H18B	2667(11)	9103(19)	2890(30)	80
H17B	2650(11)	10269(19)	3750(30)	80
H19A	2529(6)	9215(18)	4390(30)	80
H19B	2948(10)	9039(17)	4915(19)	80

Atomic Occupancy for SOLUTION 1.

Occupancy	Atom	Occupancy	Atom	Occupancy
0.75	H17C	0.75	H17D	0.75
0.75	H18C	0.75	H18D	0.75
0.75	H21A	0.75	H21B	0.75
0.75	H22A	0.75	H22B	0.75
0.75	H25A	0.75	H25B	0.75
0.75	H26A	0.75	H26B	0.75
0.25	H17E	0.25	H17F	0.25
0.25	H18E	0.25	H18F	0.25
0.25	H21C	0.25	H21D	0.25
0.25	H22C	0.25	H22D	0.25
0.25	H25C	0.25	H25D	0.25
0.25	H26C	0.25	H26D	0.25
	Occupancy 0.75 0.75 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	OccupancyAtom0.75H17C0.75H18C0.75H21A0.75H22A0.75H25A0.75H26A0.25H17E0.25H21C0.25H22C0.25H25C0.25H25C0.25H26C	OccupancyAtomOccupancy0.75H17C0.750.75H18C0.750.75H21A0.750.75H22A0.750.75H25A0.750.75H26A0.750.25H17E0.250.25H21C0.250.25H22C0.250.25H25C0.250.25H26C0.25	OccupancyAtomOccupancyAtom0.75H17C0.75H17D0.75H18C0.75H18D0.75H21A0.75H21B0.75H22A0.75H22B0.75H25A0.75H26B0.75H26A0.75H26B0.25H17E0.25H17F0.25H21C0.25H21D0.25H22C0.25H22D0.25H26C0.25H25D

Table 9 Solvent masks information for final_BLS_05-13-22.

Number	X	Y	Z	Volume	Electron count Content
1	0.000	-0.014	0.218	1206.1	409.440 water
2	0.500	-0.817	-0.763	1206.1	409.440 water

Refinement model description

Number of restraints - 4, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances H18A-018 1 with sigma of 0.02 017-H17A

1 with sigma of 0.02 019-H19A 1 with sigma of 0.02 H19B-019 0.95 with sigma of 0.02 3. Uiso/Uaniso restraints and constraints Uanis(C18B) = Uanis(C17B) Uanis (C26B) = Uanis (C25B) = Uanis (C21A) = Uanis (C18B) = Uanis (C17B) 4. Others Fixed Sof: C17A(0.75) H17C(0.75) H17D(0.75) C18A(0.75) H18C(0.75) H18D(0.75) C21A(0.75) H21A(0.75) H21B(0.75) C22A(0.75) H22A(0.75) H22B(0.75) C25A(0.75) H25A(0.75) H25B(0.75) C26A(0.75) H26A(0.75) H26B(0.75) C17B(0.25) H17E(0.25) H17F(0.25) C18B(0.25) H18E(0.25) H18F(0.25) C21B(0.25) H21C(0.25) H21D(0.25) C22B(0.25) H22C(0.25) H22D(0.25) C25B(0.25) H25C(0.25) H25D(0.25) C26B(0.25) H26C(0.25) H26D(0.25) Fixed Uiso: H18A(0.08) H17A(0.08) H18B(0.08) H17B(0.08) H19A(0.08) H19B(0.08) 5.a Secondary CH2 refined with riding coordinates: C2(H2A,H2B), C3(H3A,H3B), C4(H4A,H4B), C6(H6A,H6B), C7(H7A,H7B), C8(H8A,H8B), C10(H10A,H10B), C11(H11A,H11B), C12(H12A,H12B), C16(H16A,H16B), C20(H20A,H20B), C24(H24A,H24B), C17A(H17C,H17D), C18A(H18C,H18D), C21A(H21A,H21B), C22A(H22A, H22B), C25A(H25A,H25B), C26A(H26A,H26B), C17B(H17E,H17F), C18B(H18E,H18F), C21B(H21C,H21D), C22B(H22C,H22D), C25B(H25C,H25D), C26B(H26C,H26D) 5.b Idealised Me refined as rotating group: C14 (H14A, H14B, H14C), C28 (H28A, H28B, H28C)

Figure S1. Molecular structure of Sc(NOTA) (top) and [Sc(NOTA)(OOCCH₃)]^{1–}(bottom). Spacefilling models of the structures (based on VanderWalls radii) are shown for comparison obtained from the single crystal X-ray data.

A discussion of the stereoelectronic coordination of the Sc^{3+} by NOTA³⁻ is provided in the text. Both a steric and electronic driving force seem to contribute to the coordination of the κ_2 -(OOCCH₃). Above, the spacefilling model of the [Sc(NOTA)(OOCCH₃)]¹⁻ fragment, both with and without the OOCCH₃⁻ displayed, shows the incomplete steric saturation provided by the hexadentate NOTA³⁻ fragment alone.

HRMS Analysis

Figure S2. Mass Spectrum for Sc(NOTA) (ToF, positive mode).

MS Discussion

Observed by mass spec were two cations $[M+H]^+$ and $[M+Na]^+$. Here, M = [Sc(NOTA)], the neutral chelated metal complex without the inclusion of a capping ligand. This observation is consistent with previous reports where a capping ligand is lost during ionization. Scanning in positive ion mode demonstrates the chelation of the NOTA macrocycle to the Sc³⁺.

NMR Spectroscopy

General NMR Considerations

All NMR spectra were collected on a Bruker Avance 400 MHz spectrum or operating with a 5 mm broadband probe. ¹H NMR data was collected at 400.13 MHz in D₂O or dmso-d₆ and referenced to the residual solvent peak as 4.79 ppm or 2.50 ppm respectively. ⁴⁵Sc NMR data was collected at 97.198 MHz, again in D₂O or dmso-d₆. Chemical shifts were referenced to an external standand of Sc(NO₃)₃ (5 to 10 mg) dissolved in D₂O as 0 ppm. ¹⁷O NMR was collected at 54.243 MHz and referenced to the ¹⁷O NMR signal in tap water as 0 ppm. Samples were prepared using of Na[Sc(NOTA)(OOCCH₃)] (5 – 10 mg) dissolved in approximately 0.75 mL of solution. ⁴⁵Sc NMR acquisition parameters were as follows:

In D₂O TD: 2048 d1: 0.1 sec SW: 96153.8 hz p1: 24.2 µS pulse program: zgpg30

in dmso-d₆ TD: 2048 d1: 0.5 sec SW: 96153.8 hz p1: 24.2 μS pulse program: zgpg30

¹H and ¹⁷O NMR acquisition parameters were unmodified from standard Bruker pulse sequences.

Figure S3. ¹H NMR of Na[Sc(NOTA)(OOCCH₃)] in D₂O at 20 °C (pH = 7). Broad peaks indicative of an exchange process.

Figure S4. ¹H NMR of Na[Sc(NOTA)(OOCCH₃)] in DMSO-d₆ at 20 °C.

Note, in Figures S3 and 4 above, the broadness of the peaks indicates that there may be a dynamic structural rearrangement in solution. This could be due to isomeric shifts as has frequently been observed with +3 metal cations and the related ligand DOTA.^{4–7} In solution, such complexes can alternate between a square antiprismatic arrangement and a twisted square antiprismatic arrangement, where there is more or less alignment between the macrocyclic nitrogen and its respective acetate functional arm. This broadness precluded the observation of adequate signal to noise in ¹³C NMR attempts with the sample concentrations utilized for additional ⁴⁵Sc NMR experiments.

Figure S5. ⁴⁵Sc NMR of Na[Sc(NOTA)(OOCCH₃)] in D_2O at 20 °C.

Figure S6. ⁴⁵Sc NMR of Na[Sc-NOTA-OAc] in D₂O at 40 °C. Peak fitting was applied.

Figure S7. ⁴⁵Sc NMR of Na[Sc-NOTA-OAc] in D₂O at 80 °C. Peak fitting was applied

Figure S8. ¹⁷O NMR spectra of tap water (red) and Na[Sc(NOTA)(OOCCH₃)] in D₂O spiked with $H_2(^{17}O)$ (green) at 25 °C.

Figure S9. ⁴⁵Sc NMR of Na[Sc(NOTA)(L)] in dmso-d₆ at 20 °C. (where $L = -OOCCH_3$, DMSO, H_2O or a combination of these)

Experimental Approximation of Exchange Process Thermodynamics

Rearrangement of the Eyring equation, relating a reaction rate constant and the free energy of the reaction, leads to the Van't Hoff equation shown in Eq. 1 and reiterated here:

$$\ln(K_{eq}) = \frac{-\Delta H^{\circ}}{R} \cdot \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$$
 Eq. S1

Experimental determiniation of K_{eq} for a given equilibrium can be made at varying temperatures. Plotting (1/T) as the *x* parameter, and $\ln(K_{eq})$ as the *y* parameter, it follows that $\Delta H^{\circ} = (-R \times \text{slope})$ and $\Delta S^{\circ} = (R \times \text{intercept})$ of the linear regression relating *x* and *y*. This approach was applied to the experimentally determined species distribution of **1** [Sc(NOTA)(OH₂)] and **2** (Na[Sc(NOTA)(OOCCH₃)]) by ⁴⁵Sc NMR spectroscopy at 3 different temperatures in D₂O.

We acknowledge that this approach assumes the peak areas are roughly proportional to the species concentrations in solutions, which would require similar quadrupole relaxation environments around the ⁴⁵Sc nuclei. Thus, we treat this exercise as an experimental approximation, rather than a strict, quantitative determination of the thermodynamics of the equilibrium process considered. Deconvolution of the overlapping ⁴⁵Sc NMR peaks was accomplished by analyzing the fourier transformed FID at each temperature using the peak fitting regime in MestreNova's software suite (V14.1.2). The results of these fits supplied the relative values given as "Area" and the calculated "% Area" in Table S4, below.

The NMR solution utilized for these experiments was prepared as follows: 18 mg of single-crystals (427 g/mol, 42 μ mol) of Na[Sc(NOTA)(OOCCH₃)] were dissolved in 0.75 mL of D₂O to yield a solution that was ~0.056 M in [Sc-complex]. This concentration was used to calculate approximate *in situ* concentrations based on the area % found for the two species.

To clarify the assumptions made to reach the simplified equation for K_{eq} (Eq. 2), note that as water addition occurs to $[Sc(NOTA)(OOCCH_3)]^{1-}$, an equivalent amount of the hydrated product species, $[Sc(NOTA)(OOCCH_3)(OH_2)]^{1-}$, is generated. Thus, the total initial concentration of Sc(NOTA) complex added can be described as:

$$[Sc(NOTA)(OOCCH_3)^-]_i = [Sc(NOTA)(OOCCH_3)^-]_{eq} + [Sc(NOTA)(OOCCH_3)(OH_2)^-]_{eq}$$

Eq. S2

When treating the denominator of the K_{eq} equation (Eq. 2), the equilibrium occurs in water as the solvent. Therefore, if we approximate water as a pure liquid (~55.5 M, > 1000× more concentrated than any solutes), the activity is equal to 1 ([a_{H2O}] = 1]), so it cancels out of the equation, leaving the simple relationship that:

$$K_{eq} \approx \frac{[Sc(NOTA)(OOCCH_3)(OH_2)^-]}{[Sc(NOTA)(OOCCH_3)^-]} \text{ Eq. S3}$$

Given that the two concentrations sum to the initial concentrations, their area% are proportional to their relative concentrations; thus $ln(K_{eq})$ can be easily approximated from the NMR data.

Table S1. Van't Hoff plot parameters for VT ⁴⁵Sc NMR species distributions.

Temperature (°C)	Species No.	Shift (ppm)	Splitting (Hz)	Fitted Area	Area%	1/T (K ⁻¹)	Ln(K _{eq}) (calc'd)
20	1	99.9	4520	7.06E08	0.432	0.00241	-
20	2	88.6	4520	9.27E08	0.568	0.00341	0.27269
40	1	99.96	4229	1.39E07	0.397	0.00210	-
40	2	89.14	4320	2.11E07	0.603	0.00319	0.41622
00	1	101.78	4700	5.34E06	0.317	0 00202	-
00	2	90.03	4700	1.17E07	0.683	0.00203	0.76843

Figure S1. Van't Hoff Plot of VT 45 Sc NMR species distributions in D₂O (In(K_{eq}) vs. (1/T))

The experimental data was plotted in IgorPro (9.0) and fitted with the standard linear regression included in the software package. The $R^2 = 0.9907$. Error estimates for T were converted for the *x* parameter based on an estimate of \pm 5 °C probe calibration for temperature. The largest source of error estimated for K_{eq} is from the fitting error based on the curve separations to find Area and %

Area. The error is approximated at $\sim 10\%$ (a generous estimation from the residuals after curve fitting was applied in MestreNova).

IR Spectroscopy

IR spectroscopy was conducted using a commercial ThermoFisher Scientific Nicolet ID5 ATR-FTIR. Single crystals of the Na[Sc(NOTA)(OOCCH₃)] were dried briefly under vacuum and crushed to a powdery consistency. This solid material was deposited in a thin layer over the instrument window and directly measured as the pure solid.

Figure S2. IR spectrum of solid Na[Sc(NOTA)(OOCCH₃)], recorded in transmittance mode.

Discussion of IR

The absorptive features observed in the IR spectrum of the solid sample agree well with the coordination environment observed for the complex in the single crystal X-ray structure. A variety of C–H stretches are observed in the region from 3300-2850 cm⁻¹. Also of note is the sharp feature

at 1570 cm⁻¹ with a broad, sloping shoulder around 1630. These absorptions correlate well with predicted C – O double bond stretches in the acetate arms. Likely a spread of energies occurs as different electrostatic contacts are observed in the solid state. Additionally, another strong absorption appears at 1400 cm⁻¹. This feature likely correlates to the acetate capping ligand C – O bonds. Finally, the fingerprint region has many sharp, but less intense features which we did not attempt to assign at length.

Figure S3. Coordination of water molecule to $Na[Sc(NOTA)(OOCCH_3)]$ (**a**) to form $Na[Sc(NOTA)(OOCCH_3)(H_2O)]$ (**b**).

The considered water association is based on the following reaction:

$$\begin{split} Na[Sc(NOTA)(OOCCH_3)] + (H_2O)_{19} &\Leftrightarrow Na[Sc(NOTA)(OOCCH_3)(OH_2)] + (H_2O)_{18} \\ \Delta G &= -0.94 \ kcal \cdot mol^{-1} \end{split}$$

Indeed, the Na ions are unlikely to be found undercoordinated in water solution. Accounting for the possible hydration of Na ions (1st coordination sphere) slightly changes the ΔG of this reaction:

$$2H_2O * Na[Sc(NOTA)(OOCCH_3)] + (H_2O)_{19} \Leftrightarrow 2H_2O * Na[Sc(NOTA)(OOCCH_3)(OH_2)] + (H_2O)_{18}$$
$$\Delta G = -0.74 \ kcal \cdot mol^{-1}$$

the real solution, there could be more than one coordination sphere around the Na ion $(2^{nd}, 3^{rd}, \text{etc.})$ that could slightly affect the thermodynamics of the reaction due to the formation of additional hydrogen bonding interactions. However, the Na ions are expected to be similarly coordinated on the left and on the right side of the equations. So, to take advantage of the error cancellation effect (as the energies of reactions 2 and 3 are almost identical), we can employ unhydrated Na ions in our calculations, thus avoiding the necessity to account for all possible hydrogen bonding effects and excessive computational modeling of the hydration process including 2^{nd} , 3^{rd} , etc. coordination spheres for the [Sc(NOTA)(OOCCH₃)]^{1–} complex as well as for NaCH₃COO in the water-displacement reactions. Indeed, it is clear that the Na ions bound to the [Sc(NOTA)(OOCCH₃)]^{1–} are expected to be hydrated in the real water solution, but the use of the bare Na ions does not change the thermodynamics of the calculations in any appreciable way and thus can be employed here to save computational time. For consistency, a similar approach is further used for the acetate-water substitution reactions (described below) as well as for the possible association/substitution reactions of the [Sc(NOTA)(OOCCH₃)]^{1–} complex with DMSO.

As one can see from Table below, including Na ion (both bare or hydrated Na⁺) helps to describe the structure of the $[Sc(NOTA)(OOCCH_3)]^{1-}$ complex more accurately than excluding it. Presence of the Na ion decreases RMSD value (on all atoms) thus showing smaller deviations of the calculated structures from the experimental crystal structure.

Table S5. Comparison of the bond distances and RMSD values of the $[Sc(NOTA)(OOCCH_3)]^{1-}$, $Na[Sc(NOTA)(OOCCH_3)]$ and $2H_2O^*Na[Sc(NOTA)(OOCCH_3)]$ complexes to the experimental XRD structure.

			Theor.	Theor.	Theor.
Sc–NOTA	Sc-L	Exp.	[Sc(NOTA)(OOCCH ₃)]	Na[Sc(NOTA)(OOCCH ₃)]	2H₂O*Na[Sc(NOTA)(OOCCH₃)]
	Sc – O _{NOTA} (Avg., Å)	2.148 (0.019)	2.132	2.136	2.133
	Sc – N _{NOTA} (Avg., Å)	2.390 (0.024)	2.467	2.423	2.427
	Sc – О _{оосснз} (1) (Avg., Å)	2.197 (0.023)	2.195	2.183	2.180
Sc–OOCCH₃	Sc – О _{оосснз} (2) (Avg., Å)	2.352(0.035)	2.322	2.357	2.342
	RMSD from exp, Å		0.251	0.206	0.165

Figure S4. Acetate-water substitution in the $Na[Sc(NOTA)(OOCCH_3)]$ complex (a) to form $[Sc(NOTA)(OH_2)]$ (b).

 $Na[Sc(NOTA)(OOCCH_3)] + (H_2O)_{19} \Leftrightarrow [Sc(NOTA)(OH_2)] + NaCH_3COO + (H_2O)_{18}$ $\Delta G = +18.17 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S2}$

Figure S5. Acetate-water substitution with two water molecules to the $Na[Sc(NOTA)(OOCCH_3)]$ complex (**a**) to form $[Sc(NOTA)(OH_2)_2]$ (**b**).

 $\begin{aligned} \text{Na}[\text{Sc}(\text{NOTA})(\text{OOCCH}_3)] + (\text{H}_2\text{O})_{19} \Leftrightarrow [\text{Sc}(\text{NOTA})(\text{OH}_2)_2] + \text{Na}\text{CH}_3\text{COO} + (\text{H}_2\text{O})_{17} \\ \Delta G = +24.94 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S3} \end{aligned}$

a) Water-Association with 1-Acetate

 $\Delta G = -0.94 \text{ kcal/mol}$

b) Water-Acetate Exchange

 $\Delta G = 18.17 (n = 1) \text{ or } 24.94 (n = 2) \text{ kcal/mol}$

a) Water-Association with 1-Acetate

 ΔG = -0.94 kcal/mol

b) Water-Acetate Exchange

 $\Delta G = 18.17 (n = 1) \text{ or } 24.94 (n = 2) \text{ kcal/mol}$

Figure S6. Exchange processes calculated and associated Gibbs free energy change for both the association (a) and exchange mechanisms (b).

Discussion of Bulk Water Treatment Using the Cluster Approach

Coordination of water molecule to Na[Sc(NOTA)(OOCCH₃)] was considered using four approaches (**a-d**) based on the global minimum structures of water clusters previously determined in gas-phase calculations.⁸ Note, in each case, the structures of the $(H_2O)_n$ and $(H_2O)_{n+1}$ clusters were fully optimized in a water continuum using the PCM model:

a) Using the $(H_2O)_{17}$ cluster on the left side of the equation, and $(H_2O)_{16}$ on its right side:

Na[Sc(NOTA)(OOCCH₃)] + (H₂O)₁₇ ⇔ Na[Sc(NOTA)(OOCCH₃)(OH₂)] + (H₂O)₁₆,

$$\Delta G = +2.54 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S4}$$

b) Using the (H₂O)₁₈ cluster on the left side of the equation, and (H₂O)₁₇ on its right side:

 $\begin{aligned} \text{Na}[\text{Sc}(\text{NOTA})(\text{OOCCH}_3)] + (\text{H}_2\text{O})_{18} \Leftrightarrow \text{Na}[\text{Sc}(\text{NOTA})(\text{OOCCH}_3)(\text{OH}_2)] + (\text{H}_2\text{O})_{17}, \\ \Delta \text{G} &= +2.00 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S5} \end{aligned}$

c) Using the $(H_2O)_{19}$ cluster on the left side of the equation, and $(H_2O)_{18}$ on its right side:

$$Na[Sc(NOTA)(OOCCH_3)] + (H_2O)_{19} \Leftrightarrow Na[Sc(NOTA)(OOCCH_3)(OH_2)] + (H_2O)_{18},$$

$$\Delta G = +4.90 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. } \mathbf{86}$$

d) Using the $(H_2O)_{19}$ cluster on the left side of the equation, and $(H_2O)_{18}$ on its right side. The geometry of the $(H_2O)_{18}$ cluster was fully optimized in the water medium in PCM. $(H_2O)_{19}$ was modeled by adding one water molecule to $(H_2O)_{18}$ and optimizing it to its local minimum.

$$\begin{split} \text{Na}[\text{Sc}(\text{NOTA})(\text{OOCCH}_3)] + (\text{H}_2\text{O})_{19} &\Leftrightarrow \text{Na}[\text{Sc}(\text{NOTA})(\text{OOCCH}_3)(\text{OH}_2)] + (\text{H}_2\text{O})_{18}, \\ \Delta \text{G} &= -0.94 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S7} \end{split}$$

As shown previously, a large structural rearrangement occurs from the global minimum $(H_2O)_{18}$ (Pr44244) to the $(H_2O)_{19}$ (globular) cluster in gas phase.⁸ In order to minimize the reorganization energy associated with this rearrangement, we considered the $(H_2O)_{18}$ cluster optimized in water PCM as the representative of bulk water due to its similarity to the other water clusters, while the $(H_2O)_{19}$ cluster was obtained by adding one water molecule to $(H_2O)_{18}$ and optimizing it to the local minimum in the water medium in PCM. Please note that these water clusters may not necessarily represent their global minima configurations in the water since their structures were initially determined from the gas-phase calculations and only a local minimization was applied in PCM.⁸ Generally, with the increase of the cluster size, the solvation energy of water clusters gets closer to the bulk configuration and its energy. In the bulk, the hydrogen bonding network will not change much with one water molecule more or less. We think that the approach (d) describes the hydration process more accurately due to the significantly smaller structural rearrangement between the $(H_2O)_{18}$ and the new $(H_2O)_{19}$ water clusters.

Figure S16. Coordination of DMSO molecule to Na[Sc(NOTA)(OOCCH₃)].

Na[Sc(NOTA)(OOCCH₃)] + DMSO \Leftrightarrow Na[Sc(NOTA)(OOCCH₃)(DMSO)], $\Delta G = +7.81 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. } \text{S8}$

Figure S77. Acetate-DMSO substitution with one (a) and two (b) DMSO molecules in the $Na[Sc(NOTA)(OOCCH_3)]$ complex to form [Sc(NOTA)(DMSO)] (a) and $[Sc(NOTA)(DMSO)_2]$ (b)

 $Na[Sc(NOTA)(OOCCH_3)] + DMSO \Leftrightarrow [Sc(NOTA)(DMSO)] + NaCH_3COO,$

 $\Delta G = + 10.71 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S9}[\text{Sc(NOTA)}] + \text{DMSO} \Leftrightarrow \\ [\text{Sc(NOTA)(DMSO)}], \quad \Delta G = -2.69 \text{ kcal} \cdot \text{mol}^{-1} \qquad \text{Eq. S8} \\ \text{Na}[\text{Sc(NOTA)(OOCCH}_3)] + [\text{Sc(NOTA)}] + 2\text{DMSO} \Leftrightarrow [\text{Sc(NOTA)(DMSO)}_2] \Leftrightarrow \\ [\text{Sc(NOTA)(DMSO)}_2], \quad \Delta G = +4.06 \text{ kcal} \cdot \text{mol}^{-1} \qquad \text{Eq. S9} \\ \end{bmatrix}$

Figure S88. Simultaneous addition of DMSO and NaCH₃COO to [Sc(NOTA)] (**a**) to form Na[Sc(NOTA)(CH₃COO)(DMSO)] (**b**).

 $[Sc(NOTA)] + NaCH_3COO, +DMSO \Leftrightarrow Na[Sc(NOTA)(CH_3COO)(DMSO)], \Delta G=-6.00 \text{ kcal·mol}^1 \text{ Eq. S10}$

 $\Delta G = + 17.46 \text{ kcal} \cdot \text{mol}^{-1} \text{ Eq. S10}$

References

- 1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.
- 2 G. M. Sheldrick, University of Gottingen, Germany, 2016
- 3 A. L. Spek, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 9–18.
- 4 K. J. Miller, A. A. Saherwala, B. C. Webber, Y. Wu, A. D. Sherry and M. Woods, *Inorg. Chem.*, 2010, **49**, 8662–8664.
- 5 C. Kumas, W. S. Fernando, P. Zhao, M. Regueiro-Figueroa, G. E. Kiefer, A. F. Martins, C. Platas-Iglesias and A. D. Sherry, *Inorg. Chem.*, 2016, **55**, 9297–9305.
- J. Blahut, P. Hermann, Z. Tošner and C. Platas-Iglesias, *Phys. Chem. Chem. Phys.*, 2017, **19**, 26662–26671.
- 7 F. Benetollo, G. Bombieri, L. Calabi, S. Aime and M. Botta, *Inorg. Chem.*, 2003, **42**, 148–157.4
- 8 J. T. Su, X. Xu and W. A. G. Iii, 2004, 10518–10526.