Supporting Information

A highly sensitive sensor for colorimetric detection of palladium (II) in lysosome and its application

Qiuchen Liu, b,c Chang Liu, b Songtao Cai, d Song He, b Liancheng Zhao, h,c Xianshun Zeng * b,c and Jin Gong * a,b

a School of Pharmacy, Weifang Medical University, Weifang, 261053, P. R. China

b Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China

c School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China

d Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China.

e School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

*E-mail: gongjin@wfmc.edu.cn and xshzeng@tjut.edu.cn

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022
Contents

Materials and instruments..S2

Standard MTT assay...S2

Configuration method of metal solutions..S3

Comparison of BHCy-Pd with reported Pd$^{2+}$ probes...S3-S4

HRMS of BHCy-Pd reaction with PdCl$_2$...S4

Time-dependent fluorescence responses of BHCy-Pd...S5

Interference experiment...S5

Color change of test strip...S6

Fluorescence intensity of BHCy-Pd at different pH..S6

MTT assay..S6

1H, 13C NMR spectra and HRMS of BHcy-OH and BHcy-Pd.........................S7-S9
Materials and instruments

All reagents and organic solvents used in this paper were of analytical grade and were purchased from Aladdin Ltd, and were used directly unless otherwise stated. The silica gel (200-400 mesh) packed for the column chromatography was provided by Qingdao Ocean Chemicals. Spectral properties were tested by UV-2550 UV/Vis spectrophotometer (Hitachi Japan) and F-4600 fluorescence spectrophotometer (Hitachi Japan), respectively. The chemical structure characterizations were measured by nuclear magnetic resonance (NMR) spectra (Bruker AVANCE III 400 M/300 M) and high resolution mass spectra (Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA)), respectively. The pH was recorded by FE 20/EL 20PH meter (Mettler-Toledo Instruments (Shanghai) CO., Ltd.). Cell imaging was conducted in a laser scanning confocal microscope (Olympus FV 1000-IX81).

Standard MTT assay

HeLa cells were inoculated into 96-well plates and allowed to adhere for 12 hours. And then, different concentrations of BHCy-Pd (0, 0.1, 0.5, 1, 2, and 5 μM) were added to the cells and cultured for another 24 hours. The culture solution was changed and washed three times with PBS, and then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was added to each well and cultured for another 4 hours. The culture solution was changed again and washed before adding DMSO, and then the absorbencies were measured at 490 nm after standing for 2 hours.

Configuration method of metal solutions
The stock solutions of metal ions for were prepared from their chloride or nitrate salts in redistilled water. The stock solutions of anions for selective experiments were prepared with metal sodium salts in redistilled water. The solution was shaken well and kept at room temperature.

Table S1. Comparison of BHCy-Pd with reported Pd$^{2+}$ probes.

<table>
<thead>
<tr>
<th>No.</th>
<th>Structures</th>
<th>λ_{em} (nm)</th>
<th>Targeting</th>
<th>LOD (nM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>717</td>
<td>no</td>
<td>48</td>
<td>Talanta, 183 (2018) 164–171</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>545</td>
<td>Lysosome</td>
<td>9</td>
<td>Talanta, 231 (2021) 122365</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>513</td>
<td>no</td>
<td>20.3</td>
<td>Dyes Pigment., 170 (2019) 107656</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>636</td>
<td>no</td>
<td>1.6</td>
<td>Dyes Pigment., 152 (2018) 112–117</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>500</td>
<td>no</td>
<td>41.5</td>
<td>Dyes Pigment., 148 (2018) 286-291</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Mass (m/z)</td>
<td>Intensity</td>
<td>pIC50</td>
<td>Source</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>721</td>
<td>no</td>
<td>22.4</td>
<td>Dyes Pigment., 137 (2017) 293-298</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>560</td>
<td>no</td>
<td>16</td>
<td>Chin. Chem. Lett., 31 (2020) 2913–2916</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>735</td>
<td>no</td>
<td>140</td>
<td>Spectrochim. Acta A Mol. Biomol. Spectrosc., 267 (2022) 120500</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>440</td>
<td>no</td>
<td>382</td>
<td>Chem. Sci., 12 (2021) 9977–9982</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>740</td>
<td>Lysosome</td>
<td>5.9</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. S1. HRMS spectrum of BHCy-Pd recorded after reaction with 0.5 equiv. PdCl$_2$.
Fig. S2. Time-dependent fluorescence responses of **BHCy-Pd** (10 μM) in the absence/presence of **PdCl\(_2\)** (10 μM) and **Pd(PPh\(_3\))\(_4\)** (10 μM). The conditions: PBS (10 mM, pH 7.4, containing 25% EtOH), λ\(_{ex}\) = 680 nm, slit = 5/5 nm.

Fig. S3. Fluorescence intensity of **BHCy-Pd** (10 μM) at 740 nm upon addition of different species (10 μM) in the absence/presence of **Pd\(^{2+}\)** (10 μM). 1-29: blank, Li\(^+\), Fe\(^{3+}\), Cu\(^{2+}\), Pb\(^{2+}\), Zn\(^{2+}\), Mg\(^{2+}\), Ag\(^+\), Hg\(^{2+}\), Al\(^{3+}\), Cd\(^{2+}\), Co\(^{2+}\), Cr\(^{2+}\), Ca\(^{2+}\), Na\(^+\), Ni\(^{2+}\), K\(^+\), Mn\(^{2+}\), CO\(_3^{2-}\), I\(^-\), Br\(^-\), AcO\(^-\), HOC\(_2\), H\(_2\)O\(_2\), NO\(_2\)\(^-\), Cys, Hcy, GSH, Vc. The conditions: PBS (10 mM, pH 7.4, containing 25% EtOH), λ\(_{ex}\) = 680 nm, slit = 5/5 nm.
Fig. S4. Color change of test strip before and after treated with Pd$^{2+}$ (1 µM).

Fig. S5 Fluorescence intensity of BHCy-Pd (10 µM) at 740 nm at different pH buffer in the absence/presence of Pd$^{2+}$ (10 µM).

Fig. S6 MTT assay for the survival rate of HeLa cells treated with various concentrations of BHCy-Pd for 24 h. Error bars represent the standard deviations of 5 trials.
Fig. S7 1H NMR spectra of compound BHcy-OH in DMSO-d_6.

Fig. S8 13C NMR spectra of compound BHcy-OH in DMSO-d_6.
Fig. S9. HRMS spectrum of compound BHCy-OH.

Fig. S10 1H NMR spectra of compound BHCy-Pd in DMSO-d_6.
Fig. S11 13C NMR spectra of compound BHCy-Pd in DMSO-d_6.

Fig. S12 HRMS spectra of compound BHCy-Pd.