Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Dinitrogen-derived (diarylboryl)diazenido Complexes with Differing Coordination to the Thallium Cation

Amal Bouammali, Anaïs Coffinet, Laure Vendier and Antoine Simonneau*

LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.

E-mail:

antoine.simonneau@lcc-toulouse.fr

TABLE OF CONTENTS

I. GENER	AL INFORMATION	.3
II. SYNTH	IESES AND CHARACTERIZATION OF NEW COMPOUNDS	.3
II.1. S	Synthesis and characterization of the complex [W(CI){N ₂ BMes ₂ }(dppe) ₂] (2 ^{Ph})	3
II.2. (General procedure for the synthesis of complexes [W(CI){N ₂ B(Ar) ₂ }{R ₂ P(CH ₂) ₂ PR ₂ }] ({Ar,R]	}
= {Mes,	Et}, 2^{Et} ; $\{\text{Ar}, \text{R}\} = \{\text{C}_6\text{F}_5, \text{Ph}\}, 3^{\text{Ph}}; \{\text{Ar}, \text{R}\} = \{\text{C}_6\text{F}_5, \text{Et}\}, 3^{\text{Et}}\}$.	.4
II.3. (Characterization of the complexes [W(CI){N ₂ B(Ar) ₂ }{R ₂ P(CH ₂) ₂ PR ₂ } ₂] ({Ar,R} = {Mes,Et}, 2 ^{Et}	,
{Ar,R} =	= {C ₆ F ₅ ,Ph}, 3^{Ph} ; {Ar,R} = {C ₆ F ₅ ,Et}, 3^{Et})	.4
II.3.1	[W(Cl){N ₂ BMes ₂ }(depe) ₂] (2 ^{Et})	.4
II.3.2	$[W(Cl){N_2B(C_6F_5)_2}(dppe)_2]$ (3^{Ph})	.4
II.3.1	$[W(Cl){N_2B(C_6F_5)_2}(depe)_2]$ (3^{Et})	.4
II.4. (General procedure for the reaction of compounds 2 ^{Et} , 3 ^{Ph} and 3 ^{Et} with TIBAr ^F 4	5
II.5. (Characterization of the complexes $[TI(W{CI}{N_2B(R)_2}{L}_2)]BAr_4 ({R,L} = {Mes,depe} or$	
$\{C_6F_5,d$	ppe}) ([2 ^{Et.} TI]BAr ^F ₄ and [3 ^{Ph.} TI]BAr ^F ₄)	.5
II.5.1	[W(Cl)(NN(Tl){B(Mes) ₂ })(depe) ₂]BAr ^F ₄ ([2 ^{Et} · Tl]BAr ^F ₄)	.5
II.5.2	$[W(CITI){N_2B(C_6F_5)_2}(dppe)_2]BAr^{F_4}([3^{Ph}\cdot TI]BAr^{F_4})$.5
III. SPEC	TROSCOPIC DATA OF NEW COMPOUNDS	.7
III.1.	[W(CI){N ₂ BMes ₂ }(dppe) ₂] (2 ^{Ph}) in the reaction mixture.	.7
III.2.	[W(CI){N ₂ BMes ₂ }(depe) ₂] (2 ^{Et})	12
III.3.	$[W(CI)\{N_2B(C_6F_5)_2\}(dppe)_2] (3^{Ph})$	17
III.4.	$[W(CI)\{N_2B(C_6F_5)_2\}(depe)_2] (3^{Et}) \dots (3^{Et}) = 0$	22
III.1.	[W(CI)(NN(TI){B(Mes) ₂ })(depe) ₂] ([2 ^{Et.} TI]BAr ^F ₄)	27
III.2.	$[W(CITI){N_2B(C_6F_5)_2}(dppe)_2] ([3^{Ph} TI]BArF_4)$	33
IV. CRYS	TALLOGRAPHIC DATA	40
IV.1.	Data collection and refinement	40
IV.1.	X-Ray analysis of 2 ^{Ph}	41
IV.2.	X-Ray analysis of 2 ^{Et}	42
IV.3.	X-Ray analysis of 3 ^{Ph}	43
IV.4.	X-Ray analysis of 3 ^{Et}	44
IV.5.	X-Ray analysis of [WCl ₂ (depe) ₂]BAr ^F 4	45
IV.6.	X-Ray analysis of [3 ^{Ph.} TI]BAr ^F 4	46
IV.7.	X-Ray analysis of [2 ^{Et.} TI]BAr ^F 4	47
V. REFEF	RENCES	48

I. General Information

All manipulations were carried out under a dry and oxygen free argon or dinitrogen atmosphere using Schlenk techniques and a Jacomex glove box. The water and oxygen levels were kept at less than 1.0 ppm and 0.5 ppm respectively. Glassware was oven- or flame-dried before use. Solvents were pre-dried (toluene and *n*-pentane by passing through a Puresolv MD 7 solvent purification machine), degassed by freeze-pump-thaw cycles, dried with molecular sieves and stored in the glove box. C₆D₆ and C₆D₅Cl (purchased from Eurisotop) was degassed by freeze-pump-thaw cycles, dried with molecular sieves and stored in the glove box. ¹H, ¹³C, ¹¹B, ¹⁹F, and ³¹P NMR spectra were recorded in C_6D_6 or C_6D_5CI using NMR tubes equipped with J. Young valves on a Bruker Avance III 400 spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane and were referenced to the residual solvent resonance as the internal standard for ¹H and ¹³C NMR experiments. ¹¹B and ³¹P NMR spectra were calibrated according to the IUPAC recommendation.^{S1} Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet), coupling constant (Hz), assignment and integration. Infrared (IR) spectra were recorded in the glove box on an Agilent Cary 630 FT-IR spectrophotometer equipped with ATR or transmission modules and are reported in wavenumbers (cm⁻¹) with (s) indicating strong absorption. Elemental analyses were performed on samples sealed in tin capsules under dinitrogen by the Analytical Service of the Laboratoire de Chimie de Coordination; results are the average of two independent measurements. *trans*-[W(L)₂(N₂)₂] (L = dppe, 1^{Ph} ; S² L = depe, 1^{EtS3}), B(Cl)(R)₂ (R = C₆F₅, S⁴ mesityl {Mes}^{S5}) and TIBAr^F₄ (Ar^F = 3,5-(CF₃)₂C₆H₃)^{S6} were prepared according to reported procedures. Unless otherwise noted, other reagents were purchased from commercial suppliers and used without further purification.

II. Syntheses and Characterization of New Compounds

II.1. Synthesis and characterization of the complex [W(CI){N₂BMes₂}(dppe)₂] (2^{Ph})

In a glove box, the dinitrogen complex *trans*-[W(dppe)₂(N₂)₂] (1^{Ph}, 31 mg, 30 µmol) was weighed in a 4mL glass vial and dissolved in C_6D_6 (0.5 mL). Dimesityl(chloro)borane (26 mg, 90 µmol, 3 equiv) was added at room temperature to the orange C_6D_6 solution of 1^{Ph} in one portion. The mixture was then transferred to an NMR tube equipped with a J. Young valve and was irradiated at 365 nm for 18 days. A conversion of ca. 40% to the boryldiazenido-chloro complex was recorded according to ³¹P NMR analysis. Single crystals spontaneously grew in the NMR tube upon standing at room temperature for a few days. They were recovered by decantation and submitted to X-ray diffraction and IR spectroscopy analyses.

Yellow crystals, isolated yield 30% (11 mg, 9 µmol). The collected amount of crystals were not sufficient to perform other analyses than X-ray diffraction and IR spectroscopy; NMR spectra were recorded from the crude mixture that contains 1^{Ph} and B(Cl)Mes₂. ¹H NMR (400 MHz, C₆D₆) δ = 7.55–7.44 (m, 8H, Ar), 7.25–7.15 (m, overlaps with signals of 1^{Ph} , 12 H, Ar), 6.92 (t, *J* = 7.2 Hz, 4H, Ar), 6.89–6.81 (m, 16H, Ar), 6.79 (s, overlaps with signals of B(Cl)Mes₂, *m*-Ar, 4H), 2.70–2.53 (m, 8H, P-CH₂-CH₂-P), 2.25 (s, 6H, *p*-Ar-CH₃), 1.97 (s, 12H, *o*-Ar-CH₃). ¹¹B NMR (128 MHz, C₆D₆) δ = 70.7 (B(Cl)Mes₂). ¹³C NMR (101 MHz, C₆D₆) δ = 134.0 (td, *J* = 38.1, 4.9 Hz, Ar), 133.1–132.5 (m, *o*-Ar^{Mes}), 129.1 (s, *p*-Ar^{Mes}), 30.6–29.9

(m, P-CH₂-CH₂-P), 22.9 (s, *p*-Ar-CH₃), 21.1 (s *o*-Ar-CH₃). ³¹P{¹H} NMR (162 MHz, C₆D₆) δ 37.2 (¹J_{WP} = 292.8 Hz). IR (ATR) v/cm⁻¹ = 3054, 2916, 1948, 1602, 1433, 1395, 1235, 1197, 1093, 846, 809, 742.

II.2. General procedure for the synthesis of complexes $[W(CI){N_2B(Ar)_2}{R_2P(CH_2)_2PR_2}_2]$ ({Ar,R} = {Mes,Et}, 2^{Et}; {Ar,R} = {C₆F₅,Ph}, 3^{Ph}; {Ar,R} = {C₆F₅,Et}, 3^{Et}).

In a glove box, the dinitrogen complex *trans*-[W{R₂P(CH₂)₂PR₂}₂(N₂)₂] (1^R with R = Ph or Et, 30 µmol) is weighed in a 4-mL glass vial and dissolved in C₆D₆ (0.5 mL). The diaryl(chloro)borane (30 µmol, 1 equiv) is added at room temperature to the orange C₆D₆ solution of 1^R in one portion. The solution is then stirred vigorously for 5 min, time during which color change (from orange to either red or green) and gas evolution (N₂) are observed. The mixture is then transferred to an NMR tube equipped with a J. Young valve and analyzed by NMR spectroscopy to check for the complete formation of the *trans*-chloro boryldiazenido complex 2^{Et}, 3^{Ph} or 3^{Et}. Back to the glove box, the mixture is transferred from the NMR tube to a 4-mL glass vial. The NMR tube is rinsed with a minimal amount of toluene that is next added to the reaction solution in the vial. The latter is layered with pentane (3 mL) and the resulting mixture is kept at – 40 °C over few days, affording crystals of 2^{Et}, 3^{Ph} or 3^{Et}. After removal of the supernatant, part of the crystalline material is submitted to an X-ray diffraction analysis. The rest is washed with pentane (2 × 1 mL) and dried under vacuum, affording 2^{Ph}, 2^{Et}, 3^{Ph} or 3^{Et} as a pure compound.

II.3. Characterization of the complexes $[W(CI)\{N_2B(Ar)_2\}\{R_2P(CH_2)_2PR_2\}_2]$ ({Ar,R} = {Mes,Et}, 2^{Et}; {Ar,R} = {C₆F₅,Ph}, 3^{Ph}; {Ar,R} = {C₆F₅,Et}, 3^{Et}). *II.3.1* $[W(CI)\{N_2BMes_2\}(depe)_2]$ (2^{Et})

Yellow crystals, isolated yield 68% (18 mg, 20 µmol). ¹H NMR (400 MHz, C₆D₆) δ = 6.78 (s, *m*-Ar, 4H), 2.45 (s, 12H, *o*-Ar-CH₃), 2.23 (s, 6H, *p*-Ar-CH₃), 2.18 – 2.04 (m, 8H, CH₃-CH₂-), 1.84 – 1.64 (m, 8H, CH₃-CH₂-), 1.47 (t, *J* = 7.3 Hz, 8H, P-CH₂-CH₂-P), 1.04 – 0.93 (m, 24H, CH₃-CH₂-). ¹¹B NMR (128 MHz, C₆D₆) no signal could be detected. ³¹P{¹H} NMR (162 MHz, C₆D₆) δ 35.6 (¹*J*_{WP} = 143.2 Hz). ¹³C NMR (101 MHz, C₆D₆) δ = 145.0 (*ipso*-Ar^{Mes}), 140.5 (*o*-Ar^{Mes}), 135.3 (*p*-Ar^{Mes}), 127.9 (*m*-Ar^{Mes}), 24.6 (q, ¹*J*_{CP} = 9.3 Hz, P-CH₂-CH₂-P), 23.9 (*o*-Ar-CH₃), 21.3 (*p*-Ar-CH₃), 18.6 (dquint., ¹*J*_{CP} = 47.0, ³*J*_{CP} = 5.9 Hz, CH₃-CH₂-), 9.1 (d, ²*J*_{CP} = 50.7 Hz, CH₃-CH₂-). IR (ATR) v/cm⁻¹ = 2933, 2900, 2875, 1604, 1449, 1413, 1241, 1197, 1141, 1027, 831, 807, 728, 663. Elem. Anal. Calcd. for C₃₈H₇₀BClN₂P₄W: C, 50.21; H, 7.76; N, 3.08; Found: C, 50.48; H, 6.96; N, 3.09.

II.3.2 $[W(CI)\{N_2B(C_6F_5)_2\}(dppe)_2](3^{Ph})$

Yellow crystals, isolated yield 71% (29 mg, 21 µmol). ¹H NMR (400 MHz, C_6D_6) δ = 7.41 – 7.33 (m, 8H, Ar), 7.25 – 7.18 (m, 8H, Ar), 6.96 – 6.89 (m, 12H, Ar), 6.82 (t, J_{HH} = 7.5 Hz, 12H, Ar), 2.58 – 1.36 (m, 8H P-CH₂-CH₂-P). ¹¹B NMR (128 MHz, C_6D_6) no signal could be detected. ¹⁹F NMR (377 MHz, C_6D_6) δ = – 132.4 (dd, J_{FF} = 26.4, J_{FF} = 9.0 Hz, $4F_{ortho}$), –156.7 (t, J_{FF} = 20.9 Hz, $2F_{para}$), –163.2 – –163.5 (m, $4F_{meta}$). ³¹P{¹H} NMR (162 MHz, C_6D_6) δ = 34.6 (J_{WP} = 285 Hz). IR (ATR) v/cm⁻¹ = 3051, 1642, 1510, 1465, 1432, 1381, 1296, 1082, 965, 805, 738, 693. Elem. Anal. Calcd. for $C_{64}H_{48}BCIF_{10}N_2P_4W$: C, 55.34; H, 3.48; N, 2.02; Found: C, 55.44; H, 3.07; N, 2.02.

II.3.1
$$[W(CI){N_2B(C_6F_5)_2}(depe)_2]$$
 (3^{Et})

Green crystals, isolated yield 81% (24 mg, 24 µmol). ¹H NMR (400 MHz, C_6D_6) $\delta = 1.95 - 1.70$ (m, 16H, CH_3-CH_2-), 1.43 - 1.22 (m, 8H, P- CH_2-CH_2-P), 1.03 (m, ${}^3J_{HH} = {}^3J_{HP} = 9.8$ Hz, 12H, CH_3-CH_2-), 0.91 (m, ${}^3J_{HH} = {}^3J_{HP} = 9.8$ Hz, 12H, CH_3-CH_2-). ¹¹B NMR (128 MHz, C_6D_6) $\delta = 21.8$. ¹⁹F NMR (377 MHz, C_6D_6) $\delta = -133.4$ (dd, $J_{FF} = 25.9$, $J_{FF} = 9.8$ Hz, $4F_{ortho}$), -157.1 (t, $J_{FF} = 20.4$ Hz, $2F_{para}$), -163.7 (ddd, $J_{FF} = 26.2$, 20.3, 9.4 Hz, $4F_{meta}$). ³¹P{¹H} NMR (162 MHz, C_6D_6) $\delta = 33.3$ ($J_{PW} = 282.5$ Hz). IR (ATR) v/cm⁻¹ = 2961, 2938, 2904, 2881, 1642, 1511, 1463, 1378, 1290, 1117, 1080, 1030, 965, 846, 736, 695. Elem. Anal. Calcd. for $C_{32}H_{48}BCIF_{10}N_2P_4W$: C, 38.25; H, 4.82; N, 2.79; Found: C, 38.64; H, 4.85; N, 2.73.

II.4. General procedure for the reaction of compounds 2^{Et}, 3^{Ph} and 3^{Et} with TIBAr^F₄

Caution: Thallium compounds are notoriously highly toxic, even by skin contact. Proper protective and disposal measures have to be taken by the experimenter.

In a glove box, the *trans*-chloro boryldiazenido complex (56 µmol) is weighed in a 4-mL glass vial and dissolved in C_6D_6 or C_6D_5CI (0.5 mL). TIBAr^F₄ (56 µmol, 1.0 equiv) is added at room temperature to the solution in one portion. The resulting mixture is then stirred vigorously for 5 min, then transferred to an NMR tube equipped with a J. Young valve and analyzed by NMR spectroscopy to check for the complete conversion of the starting complex. The reaction of **3**^{Et} with TIBAr^F₄ did not show signs of adduct formation according to NMR analysis. The mixture is transferred in the glove box from the NMR tube to a 4-mL glass vial. The NMR tube was rinsed with a minimal amount of toluene. Then pentane (2 mL) was added and the resulting mixture was kept at -40 °C over few days, affording crystals of the thallium adduct. After removal of the supernatant, part of the crystals are submitted to an X-ray diffraction analysis, while the rest is washed with pentane (2 × 1 mL) and dryed under vacuum, to give [**2**^{Et.}**TI**]BAr^F₄ as a pure compound.

II.5. Characterization of the complexes $[TI(W{CI}{N_2B(R)_2}{L}_2)]BAr^F_4$ ({R,L} = {Mes,depe} or {C₆F₅,dppe}) ([2^{Et}-TI]BAr^F₄ and [3^{Ph}·TI]BAr^F₄).

II.5.1 $[W(CI)(NN(TI){B(Mes)_2})(depe)_2]BAr^{F_4}([2^{Et}\cdot TI]BAr^{F_4})$

Orange crystals, isolated yield 53% (33 mg, 29 μmol). ¹H NMR (400 MHz, C₆D₅Cl) δ = 8.31–8.19 (m, 8H, *o*-Ar^F), 7.62 (s, 4H, *p*-Ar^F), 6.69 (s, 4H, *m*-Ar^{Mes}), 2.14 (s, 6H, *o*-CH₃), 2.06 (s, 12H, *p*-CH₃), 1.95 (m, 5H, CH₃-CH₂-), 1.76 (m, 5H, CH₃-CH₂-), 1.70–1.48 (m, 12H, P-CH₂-CH₂-P + CH₃-CH₂-P), 1.38 (m, 5H, CH₃-CH₂-P), 0.94 (d, *J* = 5.9 Hz, 24H, CH₃-CH₂-).¹¹B NMR (128 MHz, C₆D₅Cl) δ = -5.90 (BAr^F₄). ¹³C NMR (101 MHz, C₆D₅Cl) δ = 167.4 (q, *J*_{CB} = 49.8 Hz, *ipso*-Ar^F), 147.0 (s, *ipso*-Ar^{Mes}), 144.4 (s, *m*-Ar^{Mes}), 143.7 (s, *o*-Ar^{Mes}), 140.2 (s, *o*-Ar^F), 134.7 (s, *m*-Ar^{Mes}), 131.3 (s, C_{IV}-Ar^F), 128.5 (s, *o*-Ar^F), 122.7 (s, *J*_{CF} = 3.8 Hz, *p*-Ar^F), 27.9 (s, *o*-CH₃), 25.9 (s, *p*-CH₃), 23.5 (t, *J*_{CP} = 12.8 Hz, P-CH₂-CH₂-P). IR (ATR) v/cm⁻¹ = 2974, 1608, 1352, 1274, 1115, 885, 837, 743, 713, 682. ¹⁹F NMR (377 MHz, C₆D₅Cl) δ = -61.9 (s, CF₃). ³¹P{¹H} NMR (162 MHz, C₆D₅Cl) δ = 31.3 (*J*_{PW} = 137.4 Hz). Elem. Anal. Calcd. for C₇₀H₈₂B2ClF₂₄N₂P₄TIW: C, 42.54; H, 4.18; N, 1.42; Found: C, 42.36; H, 3.95; N, 0.95.

II.5.2 $[W(CITI)\{N_2B(C_6F_5)_2\}(dppe)_2]BAr^{F_4}([3^{Ph}\cdot TI]BAr^{F_4})$

Yellow crystals, isolated yield 50% (44 mg, 28 µmol). ¹H NMR (400 MHz, C_6D_6) δ = 8.40 (m, 8H, *o*-Ar^F), 7.68 (s, 4H, *p*-Ar^F), 7.35 (m, 8H, *m*-Ar), 6.99–6.97 (m, 4H, *p*-Ar), 6.95 (s, 8H, *o*-Ar), 6.91–6.87 (m, 4H, *p*-Ar), 6.85 (m, 8H, *m*-Ar), 6.79 (m, 8H, *o*-Ar), 2.59 – 2.41 (m, 8H, P-CH₂-CH₂-P). ¹¹B NMR (128 MHz,

C₆D₆) δ 23.5, – 5.9. ¹³C NMR (101 MHz, C₆D₆) δ = 162.8 (q, J_{CB} = 49.5 Hz, *ipso*-Ar^F), 135.5 (s, *o*-Ar^F), 133.8 (dt, J_{CP} = 21.9, 2.2 Hz, *m*-Ph), 130.3 (s, *o*-Ph), 129.6 (s, *p*-Ph), 128.6 (s, *p*-Ph), 127.9 (s, *o*-Ph), 126.6 (C_{IV}-Ar^F), 123.9 (C_{IV}-Ar^F), 118.0 (m, *p*-Ar^F), 31.6 (quint, J_{CP} = 9.7 Hz, P-CH₂-CH₂-P). IR (ATR) v/cm⁻¹ = 3056, 1643, 1513, 1469, 1434, 1353, 1275, 1120, 967, 885, 838, 807, 741. ¹⁹F NMR (377 MHz, C₆D₆) δ = -62.0 (s, CF₃), -132.4 (dd, J_{FF} = 26.0, 9.1 Hz, 4F_{*ortho*}), -155.7 (t, J_{FF} = 20.8 Hz, 2F_{*para*}), -162.8 - -163.1 (m, 4F_{*meta*}). ³¹P{¹H} NMR (162 MHz, C₆D₆) δ 35.9 (J_{WP} = 145 Hz). Elem. Anal. Calcd. for C₉₆H₆₀B₂ClF₃₄N₂P₄TIW • 0.2 C₆D₆: C, 47.20; H, 2.44; N, 1.13; Found: C, 47.75; H, 3.05; N, 0.97.

III. Spectroscopic Data of New Compounds

III.1. [W(CI){N₂BMes₂}(dppe)₂] (2^{Ph}) in the reaction mixture. Figure S1. ¹H NMR (400 MHz, C₆D₆).

Figure S5. FT-IR (ATR, 400–4000 cm⁻¹ range) of crystalline [W(CI){N₂BMes₂}(dppe)₂] (2^{Ph}).

III.2. [W(CI){N₂BMes₂}(depe)₂] (2^{Et})

Figure S6. ¹H NMR (400 MHz, C₆D₆).

Figure S8. ¹³C{¹H} NMR (100 MHz, C₆D₆).

Figure S9. ³¹P NMR (162 MHz, C₆D₆).

Figure S10. FT-IR (ATR, 400–4000 cm⁻¹ range).

III.3. [W(CI){N₂B(C₆F₅)₂}(dppe)₂] (3^{Ph}) Figure S11. ¹H NMR (400 MHz, C₆D₆).

Figure S12. ¹¹B NMR (128 MHz, C₆D₆).

Figure S14. ³¹P{¹H} NMR (162 MHz, C₆D₆)

III.4. [W(CI){N₂B(C₆F₅)₂}(depe)₂] (3^{Et})

Figure S16. ¹H NMR (400 MHz, C₆D₆).

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

Figure S19. ³¹P{¹H} NMR (162 MHz, C₆D₆).

III.1. [W(CI)(NN(TI){B(Mes)₂})(depe)₂] ([2^{Et.}TI]BAr^F₄)

Figure S21. ¹H NMR (400 MHz, C₆D₅Cl).

Figure S22. ¹¹B NMR (128 MHz, C₆D₅Cl).

Figure S23. ¹³C{¹H} NMR (100 MHz, C₆D₅Cl).

Figure S24. ¹⁹F NMR (376 MHz, C₆D₆).

---61.89

			- 11 m	·		· · · · ·	·			·	· · · ·		·	· · · · ·	· · ·
-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-19

III.2. [W(CITI){N₂B(C₆F₅)₂}(dppe)₂] ([$3^{Ph} \cdot TI$]BAr^F₄) Figure S27. ¹H NMR (400 MHz, C₆D₆).

Figure S28. ¹H NMR (400 MHz, C₆D₅Cl).

S34

---5.91

Figure S31. ¹⁹F NMR (376 MHz, C₆D₆).

Figure S33. FT-IR (ATR, 400–4000 cm⁻¹ range).

IV. Crystallographic data

IV.1. Data collection and refinement

Data for compounds **2**^{Ph}, **2**^{Et}, **3**^{Ph}, **3**^{Et}, [**2**^{Et}·**Ti**]BAr^F₄ and [**3**^{Ph}·**Ti**]BAr^F₄ were collected at low temperature (100 K) on a Bruker Kappa Apex II diffractometer using a Mo-Ka radiation (I = 0.71073Å) micro-source and equipped with an Oxford Cryosystems Cooler Device. The structures have been solved by Direct Methods and refined by means of least-squares procedures using the SHELXS97^[S7] program included in the softwares package WinGX version 1.63^[S8] or with the aid of the software package Crystal^[S9]. The Atomic Scattering Factors were taken from International tables for X-Ray Crystallography^[S10]. Hydrogen atoms were placed geometrically and refined using a riding model. All non-hydrogens atoms were anisotropically refined. Drawing of molecules in the following figures were performed with the program Mercury^[S11] with 30% probability displacement ellipsoids for non-hydrogen atoms. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 2114361–2114366 and 2122445.

IV.1.X-Ray analysis of 2^{Ph}

Figure S34. X-ray crystal structure of 2^{Ph} , with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S1. Crystallographic data for 2^{Ph}.

Crystal Data	
Chemical formula	$C_{70}H_{70}BCIN_2P_4W$
M _r	1293.26
Crystal system, space group	Triclinic, P-1
Temperature (K)	100 K
a, b, c (Å)	13.5795 (6), 18.9959 (8), 24.5911 (10)
α, β, γ (°)	85.873 (1), 78.351 (1), 89.176 (1)
V (Å ³)	6196.6 (5)
Z	4
Radiation type	Mo K α radiation, λ = 0.71073 Å
μ (mm ⁻¹)	2.05
Crystal size (mm)	0.15 × 0.08 × 0.02
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	Multi-scan [<u>c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]</u>
T _{min} , T _{max}	0.668, 0.746
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	138108, 21899, 16338
Rint	0.092
θ _{max} (°)	25.0
Refinement	
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.031, 0.060, 0.96
No. of reflections	21899
No. of parameters	1438
H-atom treatement	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.65, -0.96

IV.2.X-Ray analysis of 2^{Et}

Figure S35. X-ray crystal structure of **2**^{Et}, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S2. Crystallographic data for 2^{Et}.

-		
Cr	/stal	data

$C_{32}H_{69}BCIN_2P_4W$
907.99
Monoclinic, C2/c
100 K
31.524 (2), 13.0407 (8), 21.6455 (14)
91.897 (3)
8893.6 (10)
8
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
2.82
0.18 × 0.10 × 0.03
Bruker Kappa APEX II diffractometer
multi-scan SADABS (Siemens, 1996)
0.82, 0.92
149547, 16194, 12199
0.102
33.2
0.035, 0.073, 0.98
16186
424
H-atom parameters constrained
2.47, -2.29

IV.3.X-Ray analysis of 3^{Ph}

Figure S36. X-ray crystal structure of 3^{Ph} , with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S3. Crystallographic data for 3^{Et}.

Crystal data	
$C_{79}H_{61}BCI_2F_{10}N_2OP_4W$	
<i>M</i> _r = 1633.73	<i>D</i> _x = 1.564 Mg m ^{−3}
Monoclinic, C2/c	Melting point:
Hall symbol: -C 2yc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 31.319 (5) Å	Cell parameters from 32.49 reflections
b = 23.807 (4) Å	$\theta = 2.6 - 20.0^{\circ}$
<i>c</i> = 19.028 (4) Å	μ = 1.91 mm ⁻¹
β = 102.001 (5)°	<i>T</i> = 103 K
V = 13877 (4) Å ³	Platelet, light yellow
Z = 8	0.11 × 0.08 × 0.02 mm
<i>F</i> (000) = 6560	
Data collection	
Bruker Kappa Apex2 diffractometer	6361 reflections with $l > 2\sigma(l)$
Radiation source: ?	$R_{\rm int} = 0.329$
Graphite monochromator	$\theta_{max} = 24.7^{\circ}, \ \theta_{min} = 1.1^{\circ}$
ϕ & ω scans	h = -36 36
Absorption correction: multi-scan SADABS (Siemens, 1996)	<i>k</i> = -26 28
$T_{\min} = 0.542, \ T_{\max} = 0.745$	1=-22 22
113592 measured reflections	
11810 independent reflections	
Refinement	
Refinement on <i>F</i> ²	
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.220$	$w = 1/[\sigma^2(F_o^2) + (0.0941P)^2 + 124.3535P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{max} = 0.001$
11810 reflections	Δρ _{max} = 2.87 e Å⁻₃
886 parameters	$\Delta \rho_{min}$ = -2.83 e Å ⁻³
37 restraints	Extinction correction: none

IV.4.X-Ray analysis of 3^{Et}

Figure S37. X-ray crystal structure of **3**^{Et}, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S4. Crystallographic data for 3^{Et}.

Crystal data	
Chemical formula	C ₃₂ H ₄₈ BCIF ₁₀ N ₂ P ₄ W
M _r	1004.71
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	110 K
a, b, c (Å)	11.8464 (4), 13.1720 (3), 27.4046 (4)
α, β, γ (°)	99.148 (3)
V (Å ³)	4221.84 (19)
Z	4
Radiation type	Mo K α radiation, $\lambda = 0.71073$ Å
μ (mm ⁻¹)	3.02
Crystal size (mm)	0.10 × 0.05 × 0.02
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan c.f. r.h. blessing, acta cryst. (1995), a51, 33-38
T _{min} , T _{max}	0.665, 0.746
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	188070, 21208, 16637
Rint	0.066
θ _{max} (°)	25.7
Refinement	
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.028, 0.067, 1.05
No. of reflections	7963
No. of parameters	472
H-atom treatement	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	1.57, –1.22

IV.5.X-Ray analysis of [WCl₂(depe)₂]BAr^F₄

Figure S38. X-ray crystal structure of $[WCl_2(depe)_2]BAr^{F_4}$, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S5. Crystallographic data for $[WCl_2(depe)_2]BAr^{F_4}$.

Crystal data			
$C_{32}H_{12}BF_{24} \cdot C_{20}H_{48}CI_2P_4W$	<i>F</i> (000) = 1622		
<i>M</i> _r = 1530.43			
Triclinic, P-1	<i>D</i> _x = 1.508 Mg m ⁻³		
Hall symbol: -P 1			
<i>a</i> = 12.8472 (1) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å		
<i>b</i> = 14.4461 (1) Å	Cell parameters from 9988 reflections		
<i>c</i> = 19.3710 (1) Å	$\theta = 2.5 - 29.3^{\circ}$		
α = 108.898 (4)°	$\mu = 1.99 \text{ mm}^{-1}$		
β = 94.296 (5)°	<i>T</i> = 110 K		
γ = 94.608 (5)°	Plate, orange		
V = 3370.84 (9) Å ³	0.16 × 0.11 × 0.03 mm		
Z = 2			
Data collection			
Bruker Kappa APEX II diffractometer	9236 reflections with $l > 2\sigma(l)$		
Radiation source: Mo micro-focus	R _{int} = 0.056		
Graphite monochromator	$\theta_{max} = 24.7^{\circ}, \ \theta_{min} = 1.1^{\circ}$		
ω–φ scans	h = -15 15		
Absorptioncorrection:multi-scan[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]	<i>k</i> = -16 16		
$T_{\min} = 0.657, \ T_{\max} = 0.747$	1=-22 22		
66473 measured reflections	Standard reflections: 0		
11372 independent reflections			
Refinement			
Refinement on <i>F</i> ²			
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites		
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained		
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_o^2) + (0.0654P)^2 + 12.3648P]$ where $P = (F_o^2 + 2F_o^2)/3$		
S = 1.06	$(\Delta/\sigma)_{max} = 0.039$		
11372 reflections	$\Delta \rho_{max}$ = 1.66 e Å ⁻³		
769 parameters	$\Delta \rho_{min} = -1.04 \text{ e} \text{ Å}^{-3}$		
9 restraints	Extinction correction: none		

IV.6.X-Ray analysis of [3^{Ph.}TI]BAr^F₄

Figure S39. X-ray crystal structure of $[3^{Ph}-TI]BArF_4$, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S6. Crystallographic data for [3^{Ph}·TI]BAr^F₄.

Cm	/etal	data
CIN	/ວເລເ	uala

or ystar data	
Chemical formula	$C_{105}H_{69}B_2CIF_{34}N_2P_4TIW$
M _r	2573.84
Crystal system, space group	Triclinic, P-1
Temperature (K)	100 K
a, b, c (Å)	16.7376 (8), 17.7790 (11), 20.2892 (17)
α, β, γ (°)	93.001 (5), 96.278(6), 92.960(4)
V (Å ³)	5983.2 (7)
Z	2
Radiation type	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
µ (mm⁻¹)	2.48
Crystal size (mm)	0.15 × 0.11 × 0.02
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan SADABS (Siemens, 1996)
T _{min} , T _{max}	0.86, 0.95
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	20983, 20983, 14076
Rint	0.000
θ _{max} (°)	25.0
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.05, 0.055, 1.09
No. of reflections	12643
No. of parameters	1346
H-atom treatement	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ Å^{-3})$	1.19, –1.16

IV.7.X-Ray analysis of [2^{Et.}TI]BAr^F₄

Figure S40. X-ray crystal structure of $[2^{Et} \cdot TI]BAr^{F_4}$, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity.

Table S7. Crystallographic data for [2^{Et.}TI]BAr^F₄.

Crvstal data	
eryotar aata	

Crystal uata	
Chemical formula	$C_{70}H_{82}B_2CIF_{24}N_2P_4TIW$
Mr	1976.58
Crystal system, space group	Monoclinic, P 2 ₁ /c
Temperature (K)	110 K
a, b, c (Å)	19.4938 (4), 20.5553 (5), 19.9296 (4)
α, β, γ (°)	106.853 (3)
V (Å ³)	7642.85 (14)
Z	4
Radiation type	Mo K α radiation, λ = 0.71073 Å
μ (mm ⁻¹)	3.829
Crystal size (mm)	0.12 × 0.12 × 0.14
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan SADABS (Siemens, 1996)
T _{min} , T _{max}	0.56, 0.63
No. of measured, independent and observed [I > $-3\sigma(I)$] reflections	214287, 23419, 14999
Rint	0.0883
θ _{max} (°)	30.57
Refinement	
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.061, 0.117, 0.99
No. of reflections	9384
No. of parameters	940
H-atom treatement	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	6.89, -6.22

V. References

- [S1] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, 73, 1795–1818.
- [S2] J. R. Dilworth and R. L. Richards, *Inorg. Synth.*, 1990, **28**, 33–43.
- [S3] A. C. Filippou, G. Schnakenburg, A. I. Philippopoulos and N. Weidemann, Angew. Chem. Int. Ed., 2005, 44, 5979–5985.
- [S4] D. J. Parks, W. E. Piers and G. P. A. Yap, Organometallics, 1998, 17, 5492–5503.
- [S5] A. Sundararaman and F. Jäkle, J. Organomet. Chem., 2003, 681, 134–142.
- [S6] J. Cullinane, A. Jolleys and F. S. Mair, *Dalton Trans.*, 2013, 42, 11971–11975.
- [S7] SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institut für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.
- [S8] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
- [S9] CRYSTALS version 12: software for guided crystal structure analysis, P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Cryst.* 2003, **36**, 1487.
- [S10] International Tables for X-Ray Crystallography Vol. IV, Kynoch press, Birmingham, England, 1974.
- [S11] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.