Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information for the Article entitled

Metalloligand-based Coordination Polymer Embedding the Nitrosyl Ruthenium Complex for Photoactive Materials with Bounded Nitric Oxide

authored by

Vasily Vorobyev,* Anastasia M. Cheplakova, Elena D. Stolyarova, Vladislav Yu. Komarov and Gennadiy A. Kostin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia

Figure S1. a) ¹H-NMR and b) ¹³C-NMR spectra of insoluble product after reaction between [RuNO(inicEt)₂Cl₃] with HNO₃ dissolved in DMSO.

Figure S2. The typical view of the crystal aggregates for $[RuNO(H_2O)_2(inic)_2(OH)]^*xH_2O$. The largest aggregate size in both cases is equal 0.25 mm.

Figure S3. Flat (0kl, h0l, hk0) and linear (02l) reconstructions of the intensity distribution in reciprocal space. The open circles mark the positions of the selected reflections of the monoclinic C lattice. **1** - sharp peaks outside the lattice; **2** - diffuse

intensity; **3** - splitting of high-angle peaks. The intensity distribution on the 02*l* reconstruction (logarithmic intensity scale) has a complex character.

Figure S4. Reconstructions of the diffraction intensity distribution from a crystal aged under the mother liquor drawn through planes equivalent to h0l and hk0 of a freshly fallen crystal (compare with Fig. S3). The diffraction was collected at 170 K.

Figure S5. The vial with alkaline solution of $[RuNO(inicEt)_2Cl_3]$ and $Zn(CH_3COO)_2$ before (left) and after (right) saturation with acetic acid.

Table S1. Crystal data and geometry parameters for)r
$[Zn{RuNO(H_2O)(inic)_2(OH)_2}_2] \cdot 12H_2O$	

Crystal data and structure refinement for complex.

Identification code	$[Zn \{RuNO(H_2O)(inic)_2(OH)_2\}_2] \cdot 12H_2O$
Empirical formula	$C_{24}H_{40}N_6O_{28}Ru_2Zn$
Formula weight	1128.13
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.0341(19)
b/Å	9.664(2)
c/Å	12.968(3)
$\alpha/^{\circ}$	71.157(7)
β/°	72.824(6)
γ/°	73.170(7)
Volume/Å ³	999.9(4)
Z	1
$\rho_{calc}g/cm^3$	1.874
µ/mm ⁻¹	1.447
F(000)	568.0
Crystal size/mm ³	$0.538 \times 0.515 \times 0.278$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.404 to 57.9
Index ranges	$-12 \le h \le 12, -13 \le k \le 8, -17 \le l \le 17$
Reflections collected	15540
Independent reflections	5208 [$R_{int} = 0.0781$, $R_{sigma} = 0.0978$]
Data/restraints/parameters	5208/0/277
Goodness-of-fit on F ²	1.029
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0630, wR_2 = 0.1528$
Final R indexes [all data]	$R_1 = 0.0874, wR_2 = 0.1658$
Largest diff. peak/hole / e Å ⁻³	3.36/-2.25

Bond 1	Lengths
--------	---------

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	O2	2.018(4)	O12	C16	1.265(7)
Ru1	01	1.946(4)	N2	C21	1.346(7)
Ru1	04	2.109(4)	N2	C25	1.354(7)
Ru1	N2	2.103(5)	N1	C11	1.355(7)

Bond Lengths							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
Ru1	N1	2.065(5)	N1	C15	1.347(7)		
Ru1	N3	1.759(5)	O3	N3	1.132(6)		
Zn1	O21	2.150(4)	C12	C11	1.375(8)		
Zn1	O2	2.150(4)	C12	C13	1.402(8)		
Zn1	O1 ¹	2.097(4)	C23	C24	1.393(8)		
Zn1	01	2.097(4)	C23	C26	1.524(8)		
Zn1	O11 ²	2.122(4)	C23	C22	1.388(8)		
Zn1	O11 ³	2.122(4)	C24	C25	1.381(8)		
011	Zn1 ⁴	2.122(4)	C21	C22	1.381(8)		
011	C16	1.253(7)	C14	C15	1.386(8)		
O22	C26	1.251(7)	C14	C13	1.380(8)		
O21	C26	1.254(7)	C13	C16	1.510(8)		
¹ 1-X,1-Y,2-Z; ² 1-X,-Y,2-Z; ³ +X,1+Y,+Z; ⁴ +X,-1+Y,+Z							

Bond Angles

Atom	n Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2	Ru1	O4	169.40(15)	Ru1	O2	Zn1	99.20(15)
O2	Ru1	N2	93.38(17)	Ru1	01	Zn1	103.42(17)
O2	Ru1	N1	85.79(18)	C16	011	Zn1 ⁴	124.0(4)
01	Ru1	O2	81.93(15)	C21	N2	Ru1	121.2(4)
01	Ru1	04	87.82(16)	C21	N2	C25	118.3(5)
01	Ru1	N2	87.54(17)	C25	N2	Ru1	120.5(4)
01	Ru1	N1	90.01(17)	C11	N1	Ru1	123.4(4)
N2	Ru1	04	88.84(16)	C15	N1	Ru1	118.6(4)
N1	Ru1	04	91.55(16)	C15	N1	C11	118.0(5)
N1	Ru1	N2	177.50(18)	03	N3	Ru1	173.8(5)
N3	Ru1	02	97.78(18)	C11	C12	C13	119.5(5)
N3	Ru1	01	178.4(2)	C24	C23	C26	120.7(5)
N3	Ru1	O4	92.39(18)	C22	C23	C24	118.1(5)
N3	Ru1	N2	94.0(2)	C22	C23	C26	121.3(5)
N3	Ru1	N1	88.4(2)	C25	C24	C23	119.2(5)
02	Znl	O21	180.0(2)	N2	C21	C22	122.1(5)
01	Znl	O21	104.54(14)	N1	C11	C12	122.3(5)
01	Znl	02	75.46(14)	O22	C26	O21	125.5(6)
O 1 ¹	Znl	02	104.54(14)	O22	C26	C23	117.0(5)
O1 ¹	Znl	O21	75.46(14)	O21	C26	C23	117.4(5)
01	Znl	011	180.0	C21	C22	C23	119.9(5)
O1 ¹	Zn1	O11 ²	90.07(15)	C13	C14	C15	119.7(5)
01	Zn1	O11 ³	90.07(15)	N2	C25	C24	122.4(5)

				Bond Angles				
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
O11	Znl	O11 ³	89.93(15)		N1	C15	C14	122.4(5)
01	Znl	O11 ²	89.93(15)		C12	C13	C16	121.6(5)
O11 ²	Znl	O21	90.54(16)		C14	C13	C12	118.0(5)
O11 ³	Znl	O2	90.54(16)		C14	C13	C16	120.5(5)
O11 ²	Znl	O2	89.46(16)		011	C16	012	126.8(5)
O11 ³	Znl	O21	89.46(16)		011	C16	C13	116.7(5)
O11 ²	Zn1	O11 ³	180.0		012	C16	C13	116.4(5)

¹1-X,1-Y,2-Z; ²1-X,-Y,2-Z; ³+X,1+Y,+Z; ⁴+X,-1+Y,+Z

TGA studies of [Zn{RuNO(H₂O)(inic)₂(OH)₂}₂]·12H₂O

At least three overlapped stages can be detected on TG(DTG) and DTA curves for Zn-Ru complex (Fig. S3).

Figure S6. Synchronous TG – MS data for

 $[Zn \{RuNO(H_2O)(inic)_2(OH)_2\}_2]$ ·12H₂O in Ar atmosphere with 10K/min heating rate.

Guest water molecules are gradually released upon heating of the sample up to 200-250°C. The mass loss at 250°C (4.5 %) approximately corresponds to 4-5 H₂O molecules. The main water release takes place at the temperatures 250-320°C and associated with sharp increase of the ion current with m/z ratio of 18. At 320°C the mass loss (15 %, 9-10 H₂O molecules) well corresponds to the elemental analysis for the fresh crystals and the water content derived from single crystal XRD studies. The destruction of Ru-NO fragment also begins at that stage (ion current m/z = 30).

The next stage 320-450°C is associated with de-carboxylation of isonicotinic acid residues (ion current m/z = 44) and also with the release of coordinated hydroxide and water ligands. The mass loss after 450°C is equal 34 %. And the final decomposition of pyridine rings in inert atmosphere slowly goes after 450°C.

The similar picture is observed in reductive atmosphere (Fig. S4), except of NO formation. In the reductive atmosphere nitric oxide is transformed to nitrogen (ion current m/z = 28).

Figure S7. Synchronous TG – MS data for $[Zn \{RuNO(H_2O)(inic)_2(OH)_2\}_2]$ ·12H₂O in Ar/H₂ atmosphere with 10K/min heating rate.

The TG (DTG) and DSC curves for $[RuNO(H_2O)_2(inic)_2(OH)] \cdot xH_2O$ clearly demonstrate three separated stages of decomposition: 150-230°C, 270-390°C and 430-500°C (Fig. S5). The first and second stages are slightly endothermic and the last stage is exothermic.

Figure S8. Synchronous TG – MS data for $[RuNO(H_2O)_2(inic)_2(OH)] \cdot xH_2O$ in Ar/H₂ atmosphere with 10 K/min heating rate.

According to mass changes and mass-spectra of gaseous phase the stages can be attributed to the following processes:

- 1. Complete removal of all water molecules and hydoxo-ligands. The only visible ion currents at that stage (m/z = 17 and 18) correspond to water molecules. Mass change at that stage (near 18 %) corresponds to 77-83 Da, depending on the initial formula, which is equal to 4-4.5 H₂O molecules.
- 2. The second stage is mainly accompanied by ion currents corresponding to CO_2 (m/z = 44), nitrogen (m/z = 28) and water (m/z = 17, 18). Thus the decarboxylation of isonicotinic acid fragments and reduction of NO group should be taken into consideration. However, the mass change (50-52 %) is larger than supposed for removal of H₂O_x + NO + 2CO₂; thus, the beginning of pyridine rings decomposition should be considered.

3. The mass-spectra show the set of ion currents (m/z = 12-16) that is typical for decomposition of hydrocarbons in H₂ atmosphere. Thus the last stage corresponds to the removal of the pyridine residuals.

Final residue after heating up to 600°C was analyzed by powder XRD. The only product that can be determined by XRD was metallic ruthenium (Fig. S6).

Figure S9. Experimental XRD pattern for the residue after thermal decomposition of $[RuNO(H_2O)_2(inic)_2(OH)] \cdot xH_2O$ in Ar/H₂ atmosphere (600°C) and theoretical XRD for HCP ruthenium.

Thus, the data of elemental analysis and TG-MS confirm the formula $[RuNO(H_2O)_2(inic)_2(OH)]\cdot xH_2O$, where x is in the range 1-2.

Figure S10. The crystal package in Model 1. Planes corresponding to complex layers are built as average for ruthenium atoms and nitrogen atoms of heterocycles.

The model was fitted with only one layer of complexes in the unit cell. SQUEZZE procedure of Platon determined Solvent Accessible Volume = 590 Å^3 per unit cell and electrons found in S.A.V. = 305.

Table S2. Crystal data and	d structure refinement for Model 1
Empirical formula	$C_{12}H_8N_4O_7Ru$
Formula weight	421.29
Temperature/K	173(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.7164(7)
b/Å	9.6430(12)
c/Å	15.5894(18)

α/°	75.772(7)
β/°	77.973(4)
γ/°	69.733(4)
Volume/Å ³	909.63(19)
Ζ	1
$ ho_{calc}g/cm^3$	0.769
μ/mm^{-1}	0.450
F(000)	208.0
Crystal size/mm ³	$0.280\times0.130\times0.040$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	2.72 to 59.454
Index ranges	$\textbf{-9} \leq h \leq \textbf{9}, \textbf{-13} \leq k \leq \textbf{13}, \textbf{-21} \leq \textbf{l} \leq \textbf{21}$
Reflections collected	15240
Independent reflections	5118 [$R_{int} = 0.0797$, $R_{sigma} = 0.0896$]
Data/restraints/parameters	5118/6/115
Goodness-of-fit on F ²	1.152
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0744, wR_2 = 0.1945$
Final R indexes [all data]	$R_1 = 0.0764, wR_2 = 0.1969$
Largest diff. peak/hole / e Å-3 $$	3.10/-2.01

Bond Lengths

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru01	N1	1.923(5)	O118	C117	1.214(9)
Ru01	$N1^1$	1.923(5)	N1	O2	1.027(14)
Ru01	01	1.981(5)	C114	C113	1.334(9)
Ru01	O1 ¹	1.981(5)	C114	C115	1.371(9)
Ru01	N1111	2.086(4)	C114	C117	1.491(8)
Ru01	N111	2.086(4)	C116	C115	1.397(7)
N111	C112	1.333(7)	C112	C113	1.401(7)
N111	C116	1.345(7)	0119	C117	1.251(9)
	¹ 2-X	K,-Y,1-Z			

Bond Angles

			-
Atom	Atom Atom	Angle/°	Atom Atom Atom Angle/°
N1	Ru01 N1 ¹	180.0(4)	C112 N111 C116 118.9(4)
N1	Ru01 O1	90.7(3)	C112 N111 Ru01 120.5(4)
$N1^1$	Ru01 O1	89.3(3)	C116 N111 Ru01 120.6(3)
N1	Ru01 O1 ¹	89.3(3)	O2 N1 Ru01 159.8(10)
$N1^1$	Ru01 O11	90.7(3)	C113 C114 C115 119.1(5)

01	Ru01	O11	180.0	C113	C114	C117	120.9(6)
N1	Ru01	N111 ¹	89.84(19)	C115	C114	C117	120.1(6)
$N1^1$	Ru01	N1111	90.16(19)	N111	C116	C115	121.1(5)
01	Ru01	N1111	90.66(17)	C114	C115	C116	119.3(5)
O1 ¹	Ru01	N111 ¹	89.34(17)	N111	C112	C113	121.0(5)
N1	Ru01	N111	90.16(19)	C114	C113	C112	120.6(6)
$N1^1$	Ru01	N111	89.84(19)	O118	C117	0119	120.0(7)
O1	Ru01	N111	89.34(17)	0118	C117	C114	120.9(6)
O11	Ru01	N111	90.66(17)	0119	C117	C114	119.1(6)
N1111	Ru01	N111	180.0				

Figure S11. The crystal package in Model 2. Planes corresponding to complex layers are built as average for ruthenium atoms and nitrogen atoms of heterocycles.

The model was fitted with two layers of complexes in the unit cell. Interplane distance between planes 2 and 3 is equal to 5.706 Å, between planes 1 and 2 – 9.265 Å. SQUEZZE procedure of Platon determined Solvent Accessible Volume = 232 Å³ electrons found in S.A.V. = 131. Solvent accessible volume is located between planes 1 and 2.

 Table S3. Crystal data and structure refinement for Model 2

Identification code	Model 2
Empirical formula	$C_{12}H_8N_3O_8Ru$
Formula weight	423.28
Temperature/K	173(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.7164(7)
b/Å	9.6430(12)
c/Å	15.5894(18)
$\alpha/^{\circ}$	75.772(7)

β/°	77.973(4)
$\gamma/^{\circ}$	69.733(4)
Volume/Å ³	909.63(19)
Z	2
$\rho_{calc}g/cm^3$	1.545
µ/mm ⁻¹	0.902
F(000)	418.0
Crystal size/mm ³	$0.280\times0.130\times0.040$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	2.72 to 59.454
Index ranges	$-9 \le h \le 9, -13 \le k \le 13, -21 \le l \le 21$
Reflections collected	15240
Independent reflections	5118 [$R_{int} = 0.0728$, $R_{sigma} = 0.0831$]
Data/restraints/parameters	5118/0/98
Goodness-of-fit on F ²	2.116
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1872, wR_2 = 0.4513$
Final R indexes [all data]	$R_1 = 0.1902, wR_2 = 0.4636$
Largest diff. peak/hole / e Å ⁻³	7.92/-3.55

Bond Lengths					
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Rul	N1	1.868(12)	C212	N211	1.295(16)
Rul	01	1.926(12)	C212	C213	1.39(2)
Ru1	03	2.015(11)	N111	C112	1.311(15)
Ru1	O2	2.022(13)	N111	C116	1.393(16)
Ru1	N111	2.071(11)	N211	C216	1.375(17)
Rul	N211	2.075(12)	C216	C215	1.45(2)
C214	C215	1.349(19)	C112	C113	1.363(17)
C214	C213	1.435(18)	C113	C114	1.38(2)
C214	C217	1.54(2)	C117	0119	1.37(2)
0118	C117	1.15(2)	C117	C114	1.69(2)
O219	C217	1.209(19)	C115	C114	1.38(2)
O218	C217	1.207(19)	C115	C116	1.40(2)
O4	N1	1.066(16)			

Bond	Angles
Atom Atom Atom Angle/°	Atom Atom Atom Angle/°

N1	Ru1	01	177.4(4)	C116	N111	Ru1	117.7(8)
N1	Ru1	O3	90.0(5)	C212	N211	C216	121.0(12)
01	Ru1	03	87.4(5)	C212	N211	Ru1	122.4(9)
N1	Ru1	O2	93.7(5)	C216	N211	Ru1	116.6(9)
01	Ru1	O2	88.9(5)	04	N1	Ru1	170.1(12)
03	Ru1	O2	176.1(4)	N211	C216	C215	116.4(12)
N1	Ru1	N111	91.5(5)	C212	C213	C214	118.2(13)
01	Ru1	N111	88.6(5)	N111	C112	C113	127.0(11)
03	Ru1	N111	89.4(4)	O218	C217	O219	128.9(16)
O2	Ru1	N111	91.8(5)	O218	C217	C214	115.3(13)
N1	Ru1	N211	90.6(5)	0219	C217	C214	115.2(13)
01	Ru1	N211	89.1(5)	C214	C215	C216	123.4(14)
O3	Ru1	N211	87.5(4)	C112	C113	C114	112.3(12)
O2	Ru1	N211	91.2(5)	0118	C117	0119	132.9(17)
N111	Ru1	N211	176.3(3)	0118	C117	C114	118.2(15)
C215	C214	C213	116.4(12)	0119	C117	C114	108.7(13)
C215	C214	C217	123.5(12)	C114	C115	C116	116.0(12)
C213	C214	C217	120.0(11)	N111	C116	C115	119.3(11)
N211	C212	C213	124.5(12)	C113	C114	C115	126.2(15)
C112	N111	C116	118.9(11)	C113	C114	C117	116.5(13)
C112	N111	Ru1	123.2(8)	C115	C114	C117	117.1(13)

Figure S12. The view on the crystal cell of $\{Zn[RuNO(H_2O)(inic)_2(OH)_2]_2\} \cdot 12H_2O$ along b-axis.

Figure S13. FTIR spectra of *trans*- $\{Zn[RuNO(H_2O)(inic)_2(OH)_2]_2\}\cdot 12H_2O$ (red) and *trans*- $[RuNO(H_2O)_2(inic)_2(OH)]\cdot H_2O$ (blue) complexes.

Figure S14. Explanation of hydrogen atoms distribution over the hydrogen bond networks of $[Zn{RuNO(H_2O)(inic)_2(OH)_2}_2]\cdot 12H_2O$: (a) oxygen atoms labeling (green for Ru, cyan for Zn, red for bridging hydroxyl O, brown for carboxyl O, orange for solvate water O); (b) probable averaged distribution of H atoms over the hydrogen bond

network of the water ribbons (black arrows – "ordered" H, red and blue arrows – alternative positioning of "disordered" H, black circles – inversion centers); (c) a variant of local ("ordered") distribution of H atoms over the hydrogen bond network.

Figure S15. The DFT optimized structures (OPBE/TZP/COSMO) of the model compounds *trans*-[RuNO(Py)₂(OH)₂(H₂O)]⁺ with the a) *N*-, b) *O*-, c) side-coordinated nitrosyl group and *trans*- $\{Zn(Py)_2[RuNO(Py)_2(OH)_2(H_2O)]_2\}^{4+}$ with d) *N*- or e) *O*-coordinated nitrosyl groups.

Figure S16. The DFT molecular orbitals (SAOP/TZP/COSMO) of the model compounds *trans*-[RuNO(Py)₂(OH)₂(H₂O)]⁺ with the a) *N*-, b) *O*-, c) side-coordinated nitrosyl group and *trans*-{ $Zn(Py)_2[RuNO(Py)_2(OH)_2(H_2O)]_2$ }⁴⁺ with d) *N*- or e) *O*-coordinated NO.

Table S4. The computed nitrosyl valence vibration modes (OPBE/TZP/COSMO) in the model compounds *trans*-[RuNO(Py)₂(OH)₂(H₂O)]⁺, denoted as {Ru}, and *trans*-{Zn(Py)₂[RuNO(Py)₂(OH)₂(H₂O)]₂}⁴⁺, denoted as {ZnRu₂}.

Model compound	Nitrosyl coordination	ν (NO), cm ⁻¹	Exp. data, cm ⁻¹
{Ru}	N-coordinated	1847	1865
	O-coordinated	1801	1720
	side-coordinated	1596	
${ZnRu_2}$	N-coordinated	1909	1873
	O-coordinated	1848	1720

Figure S17. The simulated absorption spectra (SAOP/TZP/COSMO) of the model compounds a) *trans*-[RuNO(Py)₂(OH)₂(H₂O)]⁺ with the *N*-, *O*-, or side-coordinated nitrosyl group in GS, MS1, or MS2 states, respectively, and b) *trans*-{Zn(Py)₂[RuNO(Py)₂(OH)₂(H₂O)]₂}⁴⁺ with *N*- or *O*-coordinated NO in GS or MS1 states, respectively. The absorption lines were broadened in the energy scale with the gaussian peaks with 0.25 eV FWHM.

Figure S18. The intense computed transitions (SAOP/TZP/COSMO) of the models *trans*-[RuNO(Py)₂(OH)₂(H₂O)]⁺ with the a) *N*-, b) *O*-, c) side-coordinated NO and *trans*-{Zn(Py)₂[RuNO(Py)₂(OH)₂(H₂O)]₂}⁴⁺ with d) *N*- or e) *O*-coordinated NO.

The optimized geometries of the model compounds

trans-[RuNO(Py)2(OH)2(H2O)]+, GS N-coordinated NO

32

Ru	5.108121	1.058205	3.353199
0	5.388632	0.307102	1.559655
0	7.001968	0.743955	3.819180
Ν	5.717853	2.890368	2.561867
С	7.011239	3.098020	2.282275
С	6.520384	5.241443	1.351674
Н	6.835698	6.163349	0.869744
С	4.817778	3.835283	2.258311
С	5.182782	5.018893	1.645571
С	5.440021	-1.882307	3.657471
Ν	4.581532	-0.883713	3.911404
С	7.447448	4.265311	1.684362
С	5.134087	-3.201505	3.938635
С	2.996381	-2.474575	4.711677
С	3.381864	-1.175858	4.436165
0	3.133097	1.396205	2.453833
0	3.913697	2.308811	5.692643
Ν	4.516369	1.792032	4.844790
С	3.889420	-3.508320	4.466894
Н	3.617346	-4.538826	4.683204
Н	5.871399	-3.972875	3.733779
Н	6.387542	-1.600918	3.213690
Н	2.005430	-2.662036	5.115078
Н	2.716502	-0.344084	4.642757
Н	7.694486	2.305377	2.561947
Н	8.507802	4.392859	1.485543
Н	3.784083	3.625147	2.505318
Н	4.415412	5.748150	1.402683
Н	7.009850	0.045700	4.491517
Н	6.351443	0.245885	1.457109
Н	2.558439	0.629032	2.609367
Н	3.377684	1.288982	1.516494

trans-[RuNO(Py)2(OH)2(H2O)]+, MS1 O-coordinated NO

Ru	5.030902	1.032624	3.194303
0	6.578093	0.222693	2.365241
0	6.089932	1.452677	4.807098
Ν	5.627255	2.868749	2.448470
С	4.901541	3.497331	1.512637
С	6.450747	5.309415	1.442333
Н	6.775305	6.268302	1.046454
С	6.756743	3.437073	2.892543
С	7.191409	4.660315	2.418953
С	5.410904	-1.559944	4.630587

N	1 525352	-0 858011	3 005610
C	5 29751/	4 711675	0.070349
ĉ	5.207514	4.711075	0.979340
	5.150050	-2.031100	5.101291
C	3.010506	-2.700400	4.023878
С	3.341276	-1.422001	3.614173
0	4.030559	0.585571	1.295159
Ν	2.340815	2.153919	3.983229
0	3.407619	1.753670	3.779336
С	3.919692	-3.419419	4.786929
Н	3.683424	-4.424293	5.129072
Н	5.878815	-3.348249	5.702479
Н	6.361818	-1.078472	4.827798
Н	2.048474	-3.118345	3.740897
Н	2.640966	-0.829431	3.034917
Н	3.988507	3.010905	1.188073
Н	4.673803	5.172367	0.210854
Н	7.298085	2.892297	3.656131
Н	8.104248	5.089766	2.822522
Н	5.784863	0.850815	5.502993
Н	7.289748	0.344419	3.015961
Н	3.971547	-0.379378	1.201134
Н	4.668092	0.821718	0.601368

trans-[RuNO(Py)₂(OH)₂(H₂O)]⁺, MS2 side-coordinated NO

Ru	5.282088	1.021388	3.313707
0	4.941725	0.658670	1.432633
0	7.144069	0.473920	3.201687
Ν	5.862564	2.868682	2.616493
С	6.858126	2.905128	1.719695
С	6.467575	5.222709	1.306907
Н	6.697095	6.146344	0.781881
С	5.167224	3.984126	2.879304
С	5.441431	5.177388	2.240111
С	5.308524	-1.965307	3.275597
N	4.689329	-0.911226	3.836973
С	7.192099	4.067393	1.052730
С	4.959359	-3.271913	3.566250
С	3.266236	-2.427010	5.016736
С	3.677366	-1.148825	4.690862
0	3.168522	1.744796	2.897056
0	5.664144	1.540031	5.491475
Ν	4.602641	1.707149	4.968004
С	3.921866	-3.513118	4.453703
Н	3.625127	-4.529923	4.700569
Н	5.503958	-4.084506	3.093774
Н	6.105993	-1.741118	2.574122
Н	2.439354	-2.557575	5.709321
Н	3.186640	-0.285347	5.126792
Н	7.376496	1.970280	1.543725
Н	8.007372	4.049036	0.335220
Н	4.364390	3.900746	3.602479
Н	4.840923	6.052142	2.472253

Н	7.233715	-0.349731	3.706686
Н	4.664456	-0.270951	1.372391
Н	2.509954	1.112121	3.225525
Н	3.300839	1.472179	1.962324

 ${Zn[RuNO(Py)_2(OH)_2(H_2O)]}^{4+}$, GS N-coordinated NO

Zn	0.000000	0.000000	0.000000
0	2.050172	-0.216817	0.000000
Н	-0.896689	-1.955096	-4.648897
0	0.414176	-2.127432	0.000000
Н	-0.003698	-2.995459	0.000000
Н	2.820101	0.364650	0.000000
Ru	2.415938	-2.145543	0.000000
Ν	2.790349	-3.861705	0.000000
0	3.168005	-4.949300	0.000000
0	4.447612	-1.475338	0.000000
Н	4.940288	-1.814410	0.765082
0	-3.168005	4.949300	0.000000
Н	-4.940288	1.814410	0.765082
Н	4.940288	-1.814410	-0.765082
Н	-4.940288	1.814410	-0.765082
0	-4.447612	1.475338	0.000000
Ν	-2.790349	3.861705	0.000000
Н	-2.638238	2.295385	5.918046
Н	0.003698	2.995459	0.000000
0	-0.414176	2.127432	0.000000
0	-2.050172	0.216817	0.000000
Н	0.000000	0.000000	-5.930702
Н	-2.820101	-0.364650	0.000000
Ru	-2.415938	2.145543	0.000000
Ν	-2.404217	2.132046	2.079700
С	-2.945227	1.119449	2.766916
С	-1.912616	3.187909	2.745772
С	-3.038404	1.142713	4.144289
С	-1.984361	3.282499	4.119452
С	-2.564414	2.246469	4.834686
Н	-3.301710	0.275419	2.191045
Н	-1.444454	3.966632	2.156791
Н	-1.579265	4.161325	4.612314
Н	-3.486255	0.297973	4.657925
Н	-3.486255	0.297973	-4.657925
Н	3.486255	-0.297973	4.657925
Н	3.486255	-0.297973	-4.657925
Н	-1.579265	4.161325	-4.612314
Н	1.579265	-4.161325	4.612314
Н	1.579265	-4.161325	-4.612314
Н	-1.444454	3.966632	-2.156791
Н	1.444454	-3.966632	2.156791
Н	1.444454	-3.966632	-2.156791
Н	-3.301710	0.275419	-2.191045
н			
	3.301710	-0.275419	2.191045

Н	-2.638238	2.295385	-5.918046
Н	2.638238	-2.295385	5.918046
Н	2.638238	-2.295385	-5.918046
Ν	-2.404217	2.132046	-2.079700
Ν	2.404217	-2.132046	2.079700
Ν	2.404217	-2.132046	-2.079700
С	-2.564414	2.246469	-4.834686
С	2.564414	-2.246469	4.834686
С	2.564414	-2.246469	-4.834686
С	-1.984361	3.282499	-4.119452
С	1.984361	-3.282499	4.119452
С	1.984361	-3.282499	-4.119452
С	-3.038404	1.142713	-4.144289
С	3.038404	-1.142713	4.144289
С	3.038404	-1.142713	-4.144289
С	-1.912616	3.187909	-2.745772
С	1.912616	-3.187909	2.745772
С	1.912616	-3.187909	-2.745772
С	-2.945227	1.119449	-2.766916
С	2.945227	-1.119449	2.766916
С	2.945227	-1.119449	-2.766916
Ν	0.000000	0.000000	-2.078023
С	-0.481520	-1.042249	-2.759871
С	0.481520	1.042249	-2.759871
С	-0.496096	-1.084454	-4.139386
С	0.496096	1.084454	-4.139386
С	0.000000	0.000000	-4.843434
Н	-0.858749	-1.866876	-2.165423
Н	0.858749	1.866876	-2.165423
Н	0.896689	1.955096	-4.648897
Н	0.896689	1.955096	4.648897
Н	-0.896689	-1.955096	4.648897
Н	0.858749	1.866876	2.165423
Н	-0.858749	-1.866876	2.165423
Н	0.000000	0.000000	5.930702
Ν	0.000000	0.000000	2.078023
С	0.000000	0.000000	4.843434
С	0.496096	1.084454	4.139386
С	-0.496096	-1.084454	4.139386
С	0.481520	1.042249	2.759871
С	-0.481520	-1.042249	2.759871

 ${Zn[RuNO(Py)_2(OH)_2(H_2O)]}^{4+}$, MS1 O-coordinated NO

Zn	0.000000	0.000000	0.000000
0	2.071279	-0.153935	0.000000
Н	-0.959669	-1.925617	-4.631214
0	0.429936	-2.087249	0.000000
Н	0.017296	-2.957369	0.000000
Н	2.863990	0.398431	0.000000
Ru	2.431293	-2.054241	0.000000
0	2.815227	-3.875799	0.000000
Ν	3.162633	-4.971210	0.000000

0	4.477189	-1.434964	0.000000
Н	4.972436	-1.768047	0.765556
Ν	-3.162633	4.971210	0.000000
Н	-4.972436	1.768047	0.765556
Н	4.972436	-1.768047	-0.765556
Н	-4.972436	1.768047	-0.765556
0	-4.477189	1.434964	0.000000
0	-2.815227	3,875799	0.000000
Ĥ	-2.630649	2.350581	5,903048
н	-0.017296	2 957369	0.000000
0	-0 429936	2 087249	0.000000
õ	-2 071279	0 153935	0.000000
й	0.000000	0.000000	-5 912635
н	-2 863990	-0 398431	0.000000
Ru	-2.0000000	2 05/2/1	0.000000
N	2 / 1 8 1 0 7	2.004241	2 068244
	2.410197	2.074403	2.000244
C	-2.903143	2 122205	2.700409
Č	2 069500	1 160010	2.705109
	-3.000090	1.100012	4.103104
	-1.957991	3.209599	4.075679
	-2.503701	2.270435	4.821035
н	-3.366730	0.247657	2.234535
н	-1.396543	3.8///02	2.095533
н	-1.522894	4.148233	4.542989
н	-3.534450	0.341518	4.702761
н	-3.534450	0.341518	-4.702761
Н	3.534450	-0.341518	4.702761
Н	3.534450	-0.341518	-4.702761
Н	-1.522894	4.148233	-4.542989
Н	1.522894	-4.148233	4.542989
Н	1.522894	-4.148233	-4.542989
Н	-1.396543	3.877702	-2.095533
Н	1.396543	-3.877702	2.095533
Н	1.396543	-3.877702	-2.095533
Н	-3.366730	0.247657	-2.234535
Н	3.366730	-0.247657	2.234535
Н	3.366730	-0.247657	-2.234535
Н	-2.630649	2.350581	-5.903048
Н	2.630649	-2.350581	5.903048
Н	2.630649	-2.350581	-5.903048
Ν	-2.418197	2.074483	-2.068244
Ν	2.418197	-2.074483	2.068244
Ν	2.418197	-2.074483	-2.068244
С	-2.563761	2.270435	-4.821035
С	2.563761	-2.270435	4.821035
С	2.563761	-2.270435	-4.821035
С	-1.957991	3.269599	-4.075679
C	1.957991	-3.269599	4.075679
C	1.957991	-3.269599	-4.075679
C	-3.068590	1.160012	-4.163104
Č	3.068590	-1.160012	4.163104
Ċ	3.068590	-1.160012	-4.163104
č	-1.891981	3.132205	-2.705169
č	1.891981	-3.132205	2,705169
č	1 891981	-3 132205	-2 705169
č	-2 983143	1 096697	-2 786489
-	2.000170	1.000007	2.100-100

С	2.983143	-1.096697	2.786489
С	2.983143	-1.096697	-2.786489
Ν	0.000000	0.000000	-2.062293
С	-0.514501	-1.026767	-2.742421
С	0.514501	1.026767	-2.742421
С	-0.530786	-1.068373	-4.121678
С	0.530786	1.068373	-4.121678
С	0.000000	0.000000	-4.825352
Н	-0.917265	-1.838346	-2.146437
Н	0.917265	1.838346	-2.146437
Н	0.959669	1.925617	-4.631214
Н	0.959669	1.925617	4.631214
Н	-0.959669	-1.925617	4.631214
Н	0.917265	1.838346	2.146437
Н	-0.917265	-1.838346	2.146437
Н	0.000000	0.000000	5.912635
Ν	0.000000	0.000000	2.062293
С	0.000000	0.000000	4.825352
С	0.530786	1.068373	4.121678
С	-0.530786	-1.068373	4.121678
С	0.514501	1.026767	2.742421
С	-0.514501	-1.026767	2.742421

Input files for ADF geometry optimization and frequencies calculations:

Atoms INLINE geom.xyz End

Geometry Step TrustRadius=0.1 End

Charge 1

Basis Type TZP Core None

Core None End

AnalyticalFreq End

XC

GGA OPBE Dispersion Grimme4 End

SOLVATION Solv Name=Water SCF VAR ALL END

eor

Input files for ADF TD-DFT calculations: Atoms INLINE geom.xyz End Dependency End EXACTDENSITY charge 1 Basis Type TZP Core None END XC model saop End Excitations lowest 40 NTO Allowed End SOLVATION Solv Name=Water Neql=1.79 SCF VAR ALL NOCSMRSP End End input eor