Superstructure MOF as A Framework to Composite MoS₂ with rGO for Li/Na-ion Batteries Storage with High-performance and Stability

Lei Xu¹, Zhipeng Gong¹, Yinglin Qiu¹, Wenbo Wu¹, Zunxian Yang^{*1,2}, Bingqing Ye¹,

Yuliang Ye¹, Zhiming Cheng¹, Songwei Ye¹, Zihong Shen¹, Yuanqing Zhou¹, Qiaocan

Huang¹, Zeqian Hong¹, Zongyi Meng¹, Zhiwei Zeng¹, Hongyi Hong¹, Qianting Lan¹,

Tailiang Guo^{1,2}, Sheng Xu^{1,2}

¹National & Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, P. R. China.

²Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou,350108, P.R. China

Supporting Information

Captions

Fig.S1 MOF framework Preparation flow chart.

Fig.S2 EDS spectrum of Fe₇S₈-C/ZnS-C@MoS₂/rGO.

Fig.S3 SEM of initial MOF magnifications.

Fig.S4 SEM images of coated MoS2, (b) SEM images of coated rGO.

^{*} Corresponding author should be addressed. Tel.: +86 591 8789 3299; Fax: +86 591 8789 2643 E-mail: yangzunxian@hotmail.com (Z. Yang)

Table S1 EDX Smart Quant Results.

Fig.S5 XRD pattern of pure Fe-MOF and Fe,Zn-MOF.

Fig.S6 XPS spectra of N 1s.

Fig.S7 Cycling performance of Fe_7S_8 -C/ZnS-C@MoS₂/rGO, Fe_7S_8 -C/ZnS-C@MoS₂, and Fe_7S_8 -C/ZnS-C@ rGO electrodes at 1 Ag⁻¹ and the corresponding Coulombic efficiency of Fe_7S_8 -C/ZnS-C@MoS₂/rGO.

Fig.S8 Cycling performance of Fe₇S₈-C/ZnS-C@MoS₂/rGO, electrodes at 5 Ag⁻¹.
Fig.S9 Initial five CV cycles of (a) Fe₇S₈-C/ZnS-C@MoS₂ and (b) Fe₇S₈-C/ZnS-C@
rGO at 0.5 mVs⁻¹ for Li-battery.

Fig.S10 (a) CV curves of the Fe₇S₈-C/ZnS-C@MoS₂ electrode for Li-battery at various scan rates ranging from 0.2 to 1 mVs⁻¹ and **(b)** corresponding log(i) versus log(v) plots at peaks I and II. **(c)** CV curve with the pseudocapacitive contribution (the red region) at a scan rate of 0.8 mVs⁻¹. **(d)** Capacitive contribution (in percentage) at different scan rates.

Fig.S11 (a) CV curves of the Fe₇S₈-C/ZnS-C@rGO electrode for Li-battery at various scan rates ranging from 0.2 to 1 mVs⁻¹ and **(b)** corresponding log(i) versus log(v) plots at peaks I and II. **(c)** CV curve with the pseudocapacitive contribution (the red region) at a scan rate of 0.8 mVs⁻¹. **(d)** Capacitive contribution (in percentage) at different scan rates.

Fig.S12 Initial five CV cycles of (a) Fe₇S₈-C/ZnS-C@MoS₂ and (b) Fe₇S₈-C/ZnS-C@ rGO at 0.5 mVs⁻¹ for Na-battery.

Fig.S13 (a) CV curves of the Fe_7S_8 -C/ZnS-C@MoS₂ electrode for Na-battery at

various scan rates ranging from 0.2 to 1 mVs⁻¹ and (b) corresponding log(i) versus log(v) plots at peaks I and II. (c) CV curve with the pseudocapacitive contribution (the red region) at a scan rate of 0.8 mVs⁻¹. (d) Capacitive contribution (in percentage) at different scan rates.

Fig.S14 (a) CV curves of the Fe₇S₈-C/ZnS-C@rGO electrode for Na-battery at various scan rates ranging from 0.2 to 1 mVs⁻¹ and **(b)** corresponding log(i) versus log(v) plots at peaks I and II. **(c)** CV curve with the pseudocapacitive contribution (the red region) at a scan rate of 0.8 mVs⁻¹. **(d)** Capacitive contribution (in percentage) at different scan rates.

Fig.S15 Cycling performance of Fe₇S₈-C/ZnS-C@MoS₂/rGO electrodes at 0.1 Ag⁻¹ for 100 cycles.

Fig.S16 Cycling performance of Fe_7S_8 -C/ZnS-C@MoS₂/rGO, Fe_7S_8 -C/ZnS-C@MoS₂, and Fe_7S_8 -C/ZnS-C@ rGO electrodes at 1 Ag⁻¹ and the corresponding Coulombic efficiency of Fe_7S_8 -C/ZnS-C@MoS₂/rGO.

Table S2 Comparison of the cycling performance of Fe_7S_8 -C/ZnS-C@MoS₂/rGO with the relevant anode materials for Li-ion batteries in the recently reported literature.

Table S3 Comparison of the cycling performance of Fe_7S_8 -C/ZnS-C@MoS₂/rGO with the relevant anode materials for Na-ion batteries in the recently reported literature.

Fig.S1

Fig.S2

Fig.S3

Fig.S4

Element	Weight	Atomic
С	55.99	9.92
Ο	7.15	14.29
Zn	1.56	17.26
Мо	13.08	4.82
S	13.25	3.18
Fe	8.97	8.36

Table S1

Fig.S5

Fig.S6

Fig.S7

Fig.S8

Fig.S9

Fig.S10

Fig.S11

Fig.S12

Fig.S13

Fig.S14

Fig.S15

Fig.S16

MoS ₂ /C-based anode materials	Current density (mAg ⁻¹)	(Cycles)	Capacity (mAhg ⁻¹)	Reference
Fe ₇ S ₈	66	50	110	[1]
Fe ₇ S ₈ @NC	100	100	944	[2]
Fe ₇ S ₈ @SN-rGO	200 4000	1000 1000	621.1 492.1	[3]
Fe _{1-x} S@C	100 0.3	200 40	1185 630	[4]
MoS ₂ /Carbon	100 2000	200 500	1079 600	[5]
Fe ₃ O ₄ /Fe ₇ S ₈ @C	100	300	819	[6]
Fe ₇ S ₈ -C/ZnS-C@MoS ₂ /rGO	100 1000 5000	100 500 800	1196.7 866.9 395	This work

Table S2

Fe ₇ S ₈ -C/ZnS-C based anode materials	Current density (mAg ⁻¹)	(Cycles)	Capacity (mAhg ⁻¹)	Reference
Fe ₇ S ₈ @NC	100 2000	50 100	468 415	[2]
Fe _{1-x} S/MoS ₂	100	100	584.7	[7]
Fe ₇ S ₈ @C-G	50	150	449	[8]
M-FeS ₂ /C	100	200	385	[9]
FeS@C/carbon cloth	91	100	365	[10]
Fe ₇ S ₈ -C/ZnS-C@MoS ₂ /rGO	100	200	592.2	This work

Table S3

References

[1] X. D. Zheng, Electrochemical characteristics of pyrrhotine as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 661: 483-489.
[2] Y. L. Zhou, M. Zhang, Q. Wang, J. Yang, X. Y. Luo, Y. L. Li, R. Du, X. S. Yan, X. Q. Sun, C. F. Dong, X. Y. Zhang, F. Y. Jiang, Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Research, 2020, 13(3): 691-700.

[3] S. W. Park, H. J. Shin, Y. J. Heo, D. W. Kim, Rational design of S, N Co-doped reduced graphene oxides/pyrrhotite Fe7S8 as free-standing anodes for large-scale, ultrahigh-rate and long-lifespan Li- and Na-ion batteries. Applied Surface Science, 2021, 540.

[4] C. D. Wang, M. H. Lan, Y. Zhang, H. D. Bian, M. F. Yuen, K. K. Ostrikov, J. J. Jiang, W. J. Zhang, Y. Y. Li, J. Lu, Fe1-xS/C nanocomposites from sugarcane wastederived microporous carbon for high-performance lithium ion batteries. Green

Chemistry, 2016, 18(10): 3029-3039.

[5] C. H. Wu, J. Z. Ou, F. Y. He, J. F. Ding, W. Luo, M. H. Wu, H. J. Zhang, Threedimensional MoS2/Carbon sandwiched architecture for boosted lithium storage capability. Nano Energy, 2019, 65.

[6] H. Tian, Z. G. Wu, Y. J. Zhong, X. S. Yang, X. D. Guo, X. L. Wang, B. H. Zhong, Rapid in-situ fabrication of Fe3O4/Fe7S8@C composite as anode materials for lithium-ion batteries. Materials Research Bulletin, 2021, 133. [7] S. Chen, S. Z. Huang, J. P. Hu, S. Fan, Y. Shang, M. E. Pam, X. X. Li, Y. Wang,

T. L. Xu, Y. M. Shi, H. Y. Yang, Boosting Sodium Storage of Fe1-xS/MoS2

Composite via Heterointerface Engineering. Nano-Micro Letters, 2019, 11(1).

[8] C. Z. Zhang, F. Han, J. M. Ma, Z. Li, F. Q. Zhang, S. H. Xu, H. B. Liu, X. K. Li, J.

S. Liu, A. H. Lu, Fabrication of strong internal electric field ZnS/Fe9S10

heterostructures for highly efficient sodium ion storage. Journal of Materials

Chemistry A, 2019, 7(19): 11771-11781.

[9] N. Voronina, H. Yashiro, S. T. Myung, Marcasite iron sulfide as a high-capacity electrode material for sodium storage. Journal of Materials Chemistry A, 2018, 6(35): 17111-17119.

[10] X. Wei, W. H. Li, J. A. Shi, L. Gu, Y. Yu, FeS@C on Carbon Cloth as Flexible
Electrode for Both Lithium and Sodium Storage. Acs Applied Materials &
Interfaces, 2015, 7(50): 27804-27809.