'Electronic Supplementary Information

Avoiding water reservoir effects in functional complex alkali oxides by using O_3 as the oxygen source

Henrik H. Sønsteby^{a,*}, Veronica A.-L. K. Killi^a, Linn M. Rykkje^a, Justin R. Bickford^b, Eric G. Martin^b, Robert C. Hoffman^b and Ola Nilsen^{a,*}

^a Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway ^b U.S. Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, USA

*Corresponding e-mails: henrik.sonsteby@kjemi.uio.no, ola.nilsen@kjemi.uio.no

Supplementary Figure A:

Supplementary Figure A: Growth per cycle (GPC) as a function of pulse length in seconds for Nb(OEt)₅ and O₃ in the ozone based process for Nb₂O₅.

Supplementary Figure B: Quartz crystal microbalance campaign of the 3:1 pulsed Nb:K ratio, showing mass gains for the unique process steps.

Supplementary Figure C: Williamson-Hall plot for KTN thin films deposited on MgAl₂O₄ (100).