Design of an antenna effective Eu(III)-based metalorganic framework for highly selective sensing of Fe³⁺

Jia-Qi Wu, Xin-Yue Ma, Jian-Mei Lu*, Qian Shi* and Li-Xiong Shao*

College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town,

Wenzhou, Zhejiang Province 325035, People's Republic of China.

compound	SLX-1
formula	C ₃₇ H ₃₀ EuNO ₁₁
formula weight	816.58
temperature (K)	212.97 K
crystal system	Triclinic
space group	P-1
a (Å)	10.6648(4)
b (Å)	10.9074(4)
c (Å)	17.4597(7)
α (deg)	97.4790(10)
β (deg)	101.0320(10)
γ (deg)	97.9230(10)
V (Å3)	1948.68(13)
Z	2
$Dc (g cm^{-3})$	1.392
μ (mm ⁻¹)	1.665
F(000)	820
2θ range (deg)	2.408 to 25.500
GOF on F ²	1.090
reflections collected/unique	28583/7245
R _{int}	0.0593
$R_1,^a w R_2{}^b [I > 2\sigma(I)]$	$R_1 = 0.0440, wR^2 = 0.1094$
R_1 , w R_2 (all data)	$R_1 = 0.0540, wR^2 = 0.1161$
residues (e·Å ⁻³)	1.545 / -1.113

Table S1. Crystal data and structure refinements for SLX-1

 $\overline{{}^{a} R_{1} = \sum \left(|F_{0}| - |F_{c}|\right) / \sum |F_{0}|. {}^{b} wR_{2}} = \left[\sum \left\{w \left(|F_{0}|^{2} - |F_{c}|^{2}\right)^{2}\right\} / \sum \left[w \left(|F_{0}|^{2}\right)^{2}\right]\right]^{1/2}}.$

Fig. S1. TGA curve of SLX-1.

Fig. S2. Emission spectra of SLX-1 aqueous suspension in different concentration.

Entry	Cations	QP/%
1	Na ⁺	-0.7
2	Blank	0.0
3	Ni ²⁺	0.6
4	Mg^{2+}	0.6
5	Zn^{2+}	1.4
6	Fe ²⁺	1.7
7	Cu ²⁺	2.8
8	Cd^{2+}	3.7
9	NH4 ⁺	3.8
10	K ⁺	4.8
11	Zr ⁴⁺	8.8
12	Co ²⁺	8.8
13	Fe ³⁺	95.3

 Table S2. Quenching percentage (QP) of various cations.

Fig. S3 Emission intensity of SLX-1 at 614 nm after dispersion in various Fe(III) salts.

Entry	Fe(III) salts	QP/%
1	Blank	0.0
2	Fe(NO ₃) ₃	93.9
3	$Fe_2(SO_4)_3$	95.5
4	Fe(ClO ₄) ₃	91.3
5	FeF ₃	94.8
6	FeCl ₃	95.3

Table S3. Quenching percentage (QP) of various Fe(III) salts.

Fig. S4. PXRD spectra of SLX-1 soaked into different pH solutions and used after 5 cycles (room temperature, 2theta: 5-40 degree).

Fig. S5. SEM-EDS of recovered SLX-1 after the sensing of Fe³⁺.

Fig. S6. XPS of recovered SLX-1 after the sensing of Fe^{3+} .

Fig. S7. UV absorption spectrum of SLX-1 suspension titrated by Fe^{3+} ion.

Fig. S8. Linear fitting of the UV absorption intensity of aqueous SLX-1 suspension in the Fe³⁺ titration at wavelength of 290 nm.

Fig. S9. Solid UV spectrum.

Fig. S10. IR spectrum of H_4 qptca.

Fig. S11. IR spectrum of SLX-1.

